| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cshwlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 2 | 1 | ad2ant2r | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) ) ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑈  cyclShift  𝑀 ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( 𝑈  cyclShift  𝑀 ) ) ) | 
						
							| 7 |  | cshwlen | ⊢ ( ( 𝑈  ∈  Word  𝑉  ∧  𝑀  ∈  ℤ )  →  ( ♯ ‘ ( 𝑈  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 8 | 7 | ad2ant2l | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ♯ ‘ ( 𝑈  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ♯ ‘ ( 𝑈  cyclShift  𝑀 ) )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 10 | 4 6 9 | 3eqtrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑈  ∈  Word  𝑉 )  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( 𝑊  cyclShift  𝑁 )  =  ( 𝑈  cyclShift  𝑀 ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) |