Metamath Proof Explorer


Theorem cusgruvtxb

Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by Alexander van der Vekens, 18-Jan-2018) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypothesis iscusgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion cusgruvtxb ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplUSGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 iscusgr ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) )
3 ibar ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) )
4 1 cplgruvtxb ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )
5 3 4 bitr3d ( 𝐺 ∈ USGraph → ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )
6 2 5 syl5bb ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplUSGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )