Metamath Proof Explorer


Theorem cusgruvtxb

Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by Alexander van der Vekens, 18-Jan-2018) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypothesis iscusgrvtx.v V=VtxG
Assertion cusgruvtxb GUSGraphGComplUSGraphUnivVtxG=V

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v V=VtxG
2 iscusgr GComplUSGraphGUSGraphGComplGraph
3 ibar GUSGraphGComplGraphGUSGraphGComplGraph
4 1 cplgruvtxb GUSGraphGComplGraphUnivVtxG=V
5 3 4 bitr3d GUSGraphGUSGraphGComplGraphUnivVtxG=V
6 2 5 bitrid GUSGraphGComplUSGraphUnivVtxG=V