Metamath Proof Explorer


Theorem iscusgredg

Description: A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypotheses iscusgrvtx.v V = Vtx G
iscusgredg.v E = Edg G
Assertion iscusgredg G ComplUSGraph G USGraph k V n V k n k E

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v V = Vtx G
2 iscusgredg.v E = Edg G
3 iscusgr G ComplUSGraph G USGraph G ComplGraph
4 1 iscplgrnb G USGraph G ComplGraph k V n V k n G NeighbVtx k
5 2 nbusgreledg G USGraph n G NeighbVtx k n k E
6 5 2ralbidv G USGraph k V n V k n G NeighbVtx k k V n V k n k E
7 4 6 bitrd G USGraph G ComplGraph k V n V k n k E
8 7 pm5.32i G USGraph G ComplGraph G USGraph k V n V k n k E
9 3 8 bitri G ComplUSGraph G USGraph k V n V k n k E