Metamath Proof Explorer


Theorem iscusgredg

Description: A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypotheses iscusgrvtx.v V=VtxG
iscusgredg.v E=EdgG
Assertion iscusgredg GComplUSGraphGUSGraphkVnVknkE

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v V=VtxG
2 iscusgredg.v E=EdgG
3 iscusgr GComplUSGraphGUSGraphGComplGraph
4 1 iscplgrnb GUSGraphGComplGraphkVnVknGNeighbVtxk
5 2 nbusgreledg GUSGraphnGNeighbVtxknkE
6 5 2ralbidv GUSGraphkVnVknGNeighbVtxkkVnVknkE
7 4 6 bitrd GUSGraphGComplGraphkVnVknkE
8 7 pm5.32i GUSGraphGComplGraphGUSGraphkVnVknkE
9 3 8 bitri GComplUSGraphGUSGraphkVnVknkE