Metamath Proof Explorer


Theorem iscusgredg

Description: A simple graph is complete iff all vertices are connected by an edge. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypotheses iscusgrvtx.v
|- V = ( Vtx ` G )
iscusgredg.v
|- E = ( Edg ` G )
Assertion iscusgredg
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. k e. V A. n e. ( V \ { k } ) { n , k } e. E ) )

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v
 |-  V = ( Vtx ` G )
2 iscusgredg.v
 |-  E = ( Edg ` G )
3 iscusgr
 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) )
4 1 iscplgrnb
 |-  ( G e. USGraph -> ( G e. ComplGraph <-> A. k e. V A. n e. ( V \ { k } ) n e. ( G NeighbVtx k ) ) )
5 2 nbusgreledg
 |-  ( G e. USGraph -> ( n e. ( G NeighbVtx k ) <-> { n , k } e. E ) )
6 5 2ralbidv
 |-  ( G e. USGraph -> ( A. k e. V A. n e. ( V \ { k } ) n e. ( G NeighbVtx k ) <-> A. k e. V A. n e. ( V \ { k } ) { n , k } e. E ) )
7 4 6 bitrd
 |-  ( G e. USGraph -> ( G e. ComplGraph <-> A. k e. V A. n e. ( V \ { k } ) { n , k } e. E ) )
8 7 pm5.32i
 |-  ( ( G e. USGraph /\ G e. ComplGraph ) <-> ( G e. USGraph /\ A. k e. V A. n e. ( V \ { k } ) { n , k } e. E ) )
9 3 8 bitri
 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. k e. V A. n e. ( V \ { k } ) { n , k } e. E ) )