Description: An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cvmcov.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) | |
| Assertion | cvmsss | ⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑇 ⊆ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvmcov.1 | ⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) | |
| 2 | 1 | cvmsi | ⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) | 
| 3 | 2 | simp2d | ⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ) | 
| 4 | 3 | simpld | ⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑇 ⊆ 𝐶 ) |