Metamath Proof Explorer


Theorem cvmsi

Description: One direction of cvmsval . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
Assertion cvmsi ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑈𝐽 ∧ ( 𝑇𝐶𝑇 ≠ ∅ ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 1 cvmsrcl ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑈𝐽 )
3 imaeq2 ( 𝑘 = 𝑈 → ( 𝐹𝑘 ) = ( 𝐹𝑈 ) )
4 3 eqeq2d ( 𝑘 = 𝑈 → ( 𝑠 = ( 𝐹𝑘 ) ↔ 𝑠 = ( 𝐹𝑈 ) ) )
5 oveq2 ( 𝑘 = 𝑈 → ( 𝐽t 𝑘 ) = ( 𝐽t 𝑈 ) )
6 5 oveq2d ( 𝑘 = 𝑈 → ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) = ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) )
7 6 eleq2d ( 𝑘 = 𝑈 → ( ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ↔ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) )
8 7 anbi2d ( 𝑘 = 𝑈 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
9 8 ralbidv ( 𝑘 = 𝑈 → ( ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ↔ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
10 4 9 anbi12d ( 𝑘 = 𝑈 → ( ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) ↔ ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
11 10 rabbidv ( 𝑘 = 𝑈 → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) } )
12 11 1 fvmptss2 ( 𝑆𝑈 ) ⊆ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) }
13 12 sseli ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) } )
14 unieq ( 𝑠 = 𝑇 𝑠 = 𝑇 )
15 14 eqeq1d ( 𝑠 = 𝑇 → ( 𝑠 = ( 𝐹𝑈 ) ↔ 𝑇 = ( 𝐹𝑈 ) ) )
16 difeq1 ( 𝑠 = 𝑇 → ( 𝑠 ∖ { 𝑢 } ) = ( 𝑇 ∖ { 𝑢 } ) )
17 16 raleqdv ( 𝑠 = 𝑇 → ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ↔ ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ) )
18 17 anbi1d ( 𝑠 = 𝑇 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
19 18 raleqbi1dv ( 𝑠 = 𝑇 → ( ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ↔ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
20 15 19 anbi12d ( 𝑠 = 𝑇 → ( ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ↔ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
21 20 elrab ( 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) } ↔ ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
22 13 21 sylib ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
23 22 simpld ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) )
24 eldifsn ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ↔ ( 𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅ ) )
25 23 24 sylib ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅ ) )
26 elpwi ( 𝑇 ∈ 𝒫 𝐶𝑇𝐶 )
27 26 anim1i ( ( 𝑇 ∈ 𝒫 𝐶𝑇 ≠ ∅ ) → ( 𝑇𝐶𝑇 ≠ ∅ ) )
28 25 27 syl ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇𝐶𝑇 ≠ ∅ ) )
29 22 simprd ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
30 2 28 29 3jca ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑈𝐽 ∧ ( 𝑇𝐶𝑇 ≠ ∅ ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )