Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
1
|
cvmsrcl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑈 ∈ 𝐽 ) |
3 |
|
imaeq2 |
⊢ ( 𝑘 = 𝑈 → ( ◡ 𝐹 “ 𝑘 ) = ( ◡ 𝐹 “ 𝑈 ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑘 = 𝑈 → ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ↔ ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑘 = 𝑈 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t 𝑈 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑘 = 𝑈 → ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) = ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑘 = 𝑈 → ( ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ↔ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑘 = 𝑈 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑘 = 𝑈 → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
10 |
4 9
|
anbi12d |
⊢ ( 𝑘 = 𝑈 → ( ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ↔ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑘 = 𝑈 → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) |
12 |
11 1
|
fvmptss2 |
⊢ ( 𝑆 ‘ 𝑈 ) ⊆ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } |
13 |
12
|
sseli |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) |
14 |
|
unieq |
⊢ ( 𝑠 = 𝑇 → ∪ 𝑠 = ∪ 𝑇 ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑠 = 𝑇 → ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ↔ ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ) ) |
16 |
|
difeq1 |
⊢ ( 𝑠 = 𝑇 → ( 𝑠 ∖ { 𝑢 } ) = ( 𝑇 ∖ { 𝑢 } ) ) |
17 |
16
|
raleqdv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝑠 = 𝑇 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
19 |
18
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ↔ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
20 |
15 19
|
anbi12d |
⊢ ( 𝑠 = 𝑇 → ( ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ↔ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
21 |
20
|
elrab |
⊢ ( 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ↔ ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
22 |
13 21
|
sylib |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
23 |
22
|
simpld |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ) |
24 |
|
eldifsn |
⊢ ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ↔ ( 𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅ ) ) |
25 |
23 24
|
sylib |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅ ) ) |
26 |
|
elpwi |
⊢ ( 𝑇 ∈ 𝒫 𝐶 → 𝑇 ⊆ 𝐶 ) |
27 |
26
|
anim1i |
⊢ ( ( 𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅ ) → ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ) |
28 |
25 27
|
syl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ) |
29 |
22
|
simprd |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
30 |
2 28 29
|
3jca |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |