Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
1
|
cvmsi |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
3 |
|
3anass |
⊢ ( ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ↔ ( 𝑈 ∈ 𝐽 ∧ ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) ) |
4 |
|
id |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ∈ 𝐽 ) |
5 |
|
pwexg |
⊢ ( 𝐶 ∈ 𝑉 → 𝒫 𝐶 ∈ V ) |
6 |
|
difexg |
⊢ ( 𝒫 𝐶 ∈ V → ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V ) |
7 |
|
rabexg |
⊢ ( ( 𝒫 𝐶 ∖ { ∅ } ) ∈ V → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ∈ V ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝐶 ∈ 𝑉 → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ∈ V ) |
9 |
|
imaeq2 |
⊢ ( 𝑘 = 𝑈 → ( ◡ 𝐹 “ 𝑘 ) = ( ◡ 𝐹 “ 𝑈 ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑘 = 𝑈 → ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ↔ ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑘 = 𝑈 → ( 𝐽 ↾t 𝑘 ) = ( 𝐽 ↾t 𝑈 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑘 = 𝑈 → ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) = ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑘 = 𝑈 → ( ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ↔ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑘 = 𝑈 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
15 |
14
|
ralbidv |
⊢ ( 𝑘 = 𝑈 → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ↔ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
16 |
10 15
|
anbi12d |
⊢ ( 𝑘 = 𝑈 → ( ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) ↔ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
17 |
16
|
rabbidv |
⊢ ( 𝑘 = 𝑈 → { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) |
18 |
17 1
|
fvmptg |
⊢ ( ( 𝑈 ∈ 𝐽 ∧ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ∈ V ) → ( 𝑆 ‘ 𝑈 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) |
19 |
4 8 18
|
syl2anr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑆 ‘ 𝑈 ) = { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) |
20 |
19
|
eleq2d |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ↔ 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ) ) |
21 |
|
unieq |
⊢ ( 𝑠 = 𝑇 → ∪ 𝑠 = ∪ 𝑇 ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑠 = 𝑇 → ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ↔ ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ) ) |
23 |
|
difeq1 |
⊢ ( 𝑠 = 𝑇 → ( 𝑠 ∖ { 𝑢 } ) = ( 𝑇 ∖ { 𝑢 } ) ) |
24 |
23
|
raleqdv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝑠 = 𝑇 → ( ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ↔ ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
26 |
25
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑇 → ( ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ↔ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
27 |
22 26
|
anbi12d |
⊢ ( 𝑠 = 𝑇 → ( ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ↔ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
28 |
27
|
elrab |
⊢ ( 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ↔ ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
29 |
|
eldifsn |
⊢ ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ↔ ( 𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅ ) ) |
30 |
|
elpw2g |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝑇 ∈ 𝒫 𝐶 ↔ 𝑇 ⊆ 𝐶 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑇 ∈ 𝒫 𝐶 ↔ 𝑇 ⊆ 𝐶 ) ) |
32 |
31
|
anbi1d |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅ ) ↔ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ) ) |
33 |
29 32
|
syl5bb |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ↔ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ) ) |
34 |
33
|
anbi1d |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑇 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ↔ ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) ) |
35 |
28 34
|
syl5bb |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑇 ∈ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) } ↔ ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) ) |
36 |
20 35
|
bitrd |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ↔ ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) ) |
37 |
36
|
biimprd |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽 ) → ( ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) → 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ) ) |
38 |
37
|
expimpd |
⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑈 ∈ 𝐽 ∧ ( ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) → 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ) ) |
39 |
3 38
|
syl5bi |
⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) → 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ) ) |
40 |
2 39
|
impbid2 |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ↔ ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) ) |