| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 | 1 | cvmsi | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) )  ↔  ( 𝑈  ∈  𝐽  ∧  ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ∈  𝐽 ) | 
						
							| 5 |  | pwexg | ⊢ ( 𝐶  ∈  𝑉  →  𝒫  𝐶  ∈  V ) | 
						
							| 6 |  | difexg | ⊢ ( 𝒫  𝐶  ∈  V  →  ( 𝒫  𝐶  ∖  { ∅ } )  ∈  V ) | 
						
							| 7 |  | rabexg | ⊢ ( ( 𝒫  𝐶  ∖  { ∅ } )  ∈  V  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) }  ∈  V ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝐶  ∈  𝑉  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) }  ∈  V ) | 
						
							| 9 |  | imaeq2 | ⊢ ( 𝑘  =  𝑈  →  ( ◡ 𝐹  “  𝑘 )  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑘  =  𝑈  →  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ↔  ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑘  =  𝑈  →  ( 𝐽  ↾t  𝑘 )  =  ( 𝐽  ↾t  𝑈 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑘  =  𝑈  →  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) )  =  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( 𝑘  =  𝑈  →  ( ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) )  ↔  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑘  =  𝑈  →  ( ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 15 | 14 | ralbidv | ⊢ ( 𝑘  =  𝑈  →  ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) )  ↔  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 16 | 10 15 | anbi12d | ⊢ ( 𝑘  =  𝑈  →  ( ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) )  ↔  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 17 | 16 | rabbidv | ⊢ ( 𝑘  =  𝑈  →  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) }  =  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) } ) | 
						
							| 18 | 17 1 | fvmptg | ⊢ ( ( 𝑈  ∈  𝐽  ∧  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) }  ∈  V )  →  ( 𝑆 ‘ 𝑈 )  =  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) } ) | 
						
							| 19 | 4 8 18 | syl2anr | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑆 ‘ 𝑈 )  =  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) } ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ↔  𝑇  ∈  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) } ) ) | 
						
							| 21 |  | unieq | ⊢ ( 𝑠  =  𝑇  →  ∪  𝑠  =  ∪  𝑇 ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑠  =  𝑇  →  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ↔  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 23 |  | difeq1 | ⊢ ( 𝑠  =  𝑇  →  ( 𝑠  ∖  { 𝑢 } )  =  ( 𝑇  ∖  { 𝑢 } ) ) | 
						
							| 24 | 23 | raleqdv | ⊢ ( 𝑠  =  𝑇  →  ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅ ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( 𝑠  =  𝑇  →  ( ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) )  ↔  ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 26 | 25 | raleqbi1dv | ⊢ ( 𝑠  =  𝑇  →  ( ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) )  ↔  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 27 | 22 26 | anbi12d | ⊢ ( 𝑠  =  𝑇  →  ( ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) )  ↔  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 𝑇  ∈  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) }  ↔  ( 𝑇  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 29 |  | eldifsn | ⊢ ( 𝑇  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ↔  ( 𝑇  ∈  𝒫  𝐶  ∧  𝑇  ≠  ∅ ) ) | 
						
							| 30 |  | elpw2g | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝑇  ∈  𝒫  𝐶  ↔  𝑇  ⊆  𝐶 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑇  ∈  𝒫  𝐶  ↔  𝑇  ⊆  𝐶 ) ) | 
						
							| 32 | 31 | anbi1d | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝑇  ∈  𝒫  𝐶  ∧  𝑇  ≠  ∅ )  ↔  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ ) ) ) | 
						
							| 33 | 29 32 | bitrid | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑇  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ↔  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ ) ) ) | 
						
							| 34 | 33 | anbi1d | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝑇  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) )  ↔  ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) ) | 
						
							| 35 | 28 34 | bitrid | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑇  ∈  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) }  ↔  ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) ) | 
						
							| 36 | 20 35 | bitrd | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ↔  ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) ) | 
						
							| 37 | 36 | biimprd | ⊢ ( ( 𝐶  ∈  𝑉  ∧  𝑈  ∈  𝐽 )  →  ( ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) )  →  𝑇  ∈  ( 𝑆 ‘ 𝑈 ) ) ) | 
						
							| 38 | 37 | expimpd | ⊢ ( 𝐶  ∈  𝑉  →  ( ( 𝑈  ∈  𝐽  ∧  ( ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) )  →  𝑇  ∈  ( 𝑆 ‘ 𝑈 ) ) ) | 
						
							| 39 | 3 38 | biimtrid | ⊢ ( 𝐶  ∈  𝑉  →  ( ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) )  →  𝑇  ∈  ( 𝑆 ‘ 𝑈 ) ) ) | 
						
							| 40 | 2 39 | impbid2 | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ↔  ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) ) |