Description: The cyclic subgroup generated by A is a subgroup. Deduction related to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubgcld.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubgcld.3 | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) | ||
| cycsubgcld.4 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| cycsubgcld.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | cycsubgcld | ⊢ ( 𝜑 → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cycsubgcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubgcld.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubgcld.3 | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) ) | |
| 4 | cycsubgcld.4 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 5 | cycsubgcld.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 6 | 1 2 3 | cycsubgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) | 
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → ( ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ran 𝐹 ) ) | 
| 8 | 7 | simpld | ⊢ ( 𝜑 → ran 𝐹 ∈ ( SubGrp ‘ 𝐺 ) ) |