Metamath Proof Explorer


Theorem cycsubgcld

Description: The cyclic subgroup generated by A is a subgroup. Deduction related to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubgcld.1 B = Base G
cycsubgcld.2 · ˙ = G
cycsubgcld.3 F = n n · ˙ A
cycsubgcld.4 φ G Grp
cycsubgcld.5 φ A B
Assertion cycsubgcld φ ran F SubGrp G

Proof

Step Hyp Ref Expression
1 cycsubgcld.1 B = Base G
2 cycsubgcld.2 · ˙ = G
3 cycsubgcld.3 F = n n · ˙ A
4 cycsubgcld.4 φ G Grp
5 cycsubgcld.5 φ A B
6 1 2 3 cycsubgcl G Grp A B ran F SubGrp G A ran F
7 4 5 6 syl2anc φ ran F SubGrp G A ran F
8 7 simpld φ ran F SubGrp G