Metamath Proof Explorer


Theorem cycsubg2

Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cycsubg2.x X=BaseG
cycsubg2.t ·˙=G
cycsubg2.f F=xx·˙A
cycsubg2.k K=mrClsSubGrpG
Assertion cycsubg2 GGrpAXKA=ranF

Proof

Step Hyp Ref Expression
1 cycsubg2.x X=BaseG
2 cycsubg2.t ·˙=G
3 cycsubg2.f F=xx·˙A
4 cycsubg2.k K=mrClsSubGrpG
5 snssg AXAyAy
6 5 bicomd AXAyAy
7 6 adantl GGrpAXAyAy
8 7 rabbidv GGrpAXySubGrpG|Ay=ySubGrpG|Ay
9 8 inteqd GGrpAXySubGrpG|Ay=ySubGrpG|Ay
10 1 subgacs GGrpSubGrpGACSX
11 10 acsmred GGrpSubGrpGMooreX
12 snssi AXAX
13 4 mrcval SubGrpGMooreXAXKA=ySubGrpG|Ay
14 11 12 13 syl2an GGrpAXKA=ySubGrpG|Ay
15 1 2 3 cycsubg GGrpAXranF=ySubGrpG|Ay
16 9 14 15 3eqtr4d GGrpAXKA=ranF