Metamath Proof Explorer
Description: Add two numerals M and N (with carry). (Contributed by Mario
Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
decma.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
decma.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
decma.c |
⊢ 𝐶 ∈ ℕ0 |
|
|
decma.d |
⊢ 𝐷 ∈ ℕ0 |
|
|
decma.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
|
|
decma.n |
⊢ 𝑁 = ; 𝐶 𝐷 |
|
|
decaddc.e |
⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐸 |
|
|
decaddc2.t |
⊢ ( 𝐵 + 𝐷 ) = ; 1 0 |
|
Assertion |
decaddc2 |
⊢ ( 𝑀 + 𝑁 ) = ; 𝐸 0 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decma.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decma.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decma.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
decma.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
decma.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 6 |
|
decma.n |
⊢ 𝑁 = ; 𝐶 𝐷 |
| 7 |
|
decaddc.e |
⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐸 |
| 8 |
|
decaddc2.t |
⊢ ( 𝐵 + 𝐷 ) = ; 1 0 |
| 9 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 10 |
1 2 3 4 5 6 7 9 8
|
decaddc |
⊢ ( 𝑀 + 𝑁 ) = ; 𝐸 0 |