Description: Commute ones place in addition. (Contributed by Steven Nguyen, 29-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decaddcom.a | ⊢ 𝐴 ∈ ℕ0 | |
decaddcom.b | ⊢ 𝐵 ∈ ℕ0 | ||
decaddcom.c | ⊢ 𝐶 ∈ ℕ0 | ||
Assertion | decaddcom | ⊢ ( ; 𝐴 𝐵 + 𝐶 ) = ( ; 𝐴 𝐶 + 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddcom.a | ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddcom.b | ⊢ 𝐵 ∈ ℕ0 | |
3 | decaddcom.c | ⊢ 𝐶 ∈ ℕ0 | |
4 | eqid | ⊢ ; 𝐴 𝐵 = ; 𝐴 𝐵 | |
5 | eqid | ⊢ ( 𝐵 + 𝐶 ) = ( 𝐵 + 𝐶 ) | |
6 | 1 2 3 4 5 | decaddi | ⊢ ( ; 𝐴 𝐵 + 𝐶 ) = ; 𝐴 ( 𝐵 + 𝐶 ) |
7 | eqid | ⊢ ; 𝐴 𝐶 = ; 𝐴 𝐶 | |
8 | 3 | nn0cni | ⊢ 𝐶 ∈ ℂ |
9 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
10 | 8 9 | addcomi | ⊢ ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) |
11 | 1 3 2 7 10 | decaddi | ⊢ ( ; 𝐴 𝐶 + 𝐵 ) = ; 𝐴 ( 𝐵 + 𝐶 ) |
12 | 6 11 | eqtr4i | ⊢ ( ; 𝐴 𝐵 + 𝐶 ) = ( ; 𝐴 𝐶 + 𝐵 ) |