| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqn5i.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 3 |
1 2
|
deccl |
⊢ ; 𝐴 0 ∈ ℕ0 |
| 4 |
3
|
nn0cni |
⊢ ; 𝐴 0 ∈ ℂ |
| 5 |
|
5cn |
⊢ 5 ∈ ℂ |
| 6 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 7 |
|
eqid |
⊢ ; 𝐴 0 = ; 𝐴 0 |
| 8 |
5
|
addlidi |
⊢ ( 0 + 5 ) = 5 |
| 9 |
1 2 6 7 8
|
decaddi |
⊢ ( ; 𝐴 0 + 5 ) = ; 𝐴 5 |
| 10 |
|
eqid |
⊢ ; 𝐴 5 = ; 𝐴 5 |
| 11 |
|
eqid |
⊢ ( 𝐴 + 1 ) = ( 𝐴 + 1 ) |
| 12 |
|
5p5e10 |
⊢ ( 5 + 5 ) = ; 1 0 |
| 13 |
1 6 6 10 11 12
|
decaddci2 |
⊢ ( ; 𝐴 5 + 5 ) = ; ( 𝐴 + 1 ) 0 |
| 14 |
4 5 9 13
|
sqmid3api |
⊢ ( ; 𝐴 5 · ; 𝐴 5 ) = ( ( ; 𝐴 0 · ; ( 𝐴 + 1 ) 0 ) + ( 5 · 5 ) ) |
| 15 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 16 |
|
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
| 17 |
|
peano2nn0 |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 18 |
1 17
|
ax-mp |
⊢ ( 𝐴 + 1 ) ∈ ℕ0 |
| 19 |
18 2
|
deccl |
⊢ ; ( 𝐴 + 1 ) 0 ∈ ℕ0 |
| 20 |
1 18
|
nn0mulcli |
⊢ ( 𝐴 · ( 𝐴 + 1 ) ) ∈ ℕ0 |
| 21 |
1 18 2
|
decmulnc |
⊢ ( 𝐴 · ; ( 𝐴 + 1 ) 0 ) = ; ( 𝐴 · ( 𝐴 + 1 ) ) ( 𝐴 · 0 ) |
| 22 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 23 |
22
|
mul01i |
⊢ ( 𝐴 · 0 ) = 0 |
| 24 |
23
|
deceq2i |
⊢ ; ( 𝐴 · ( 𝐴 + 1 ) ) ( 𝐴 · 0 ) = ; ( 𝐴 · ( 𝐴 + 1 ) ) 0 |
| 25 |
21 24
|
eqtri |
⊢ ( 𝐴 · ; ( 𝐴 + 1 ) 0 ) = ; ( 𝐴 · ( 𝐴 + 1 ) ) 0 |
| 26 |
|
2cn |
⊢ 2 ∈ ℂ |
| 27 |
26
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
| 28 |
20 2 15 25 27
|
decaddi |
⊢ ( ( 𝐴 · ; ( 𝐴 + 1 ) 0 ) + 2 ) = ; ( 𝐴 · ( 𝐴 + 1 ) ) 2 |
| 29 |
19
|
nn0cni |
⊢ ; ( 𝐴 + 1 ) 0 ∈ ℂ |
| 30 |
29
|
mul02i |
⊢ ( 0 · ; ( 𝐴 + 1 ) 0 ) = 0 |
| 31 |
30
|
oveq1i |
⊢ ( ( 0 · ; ( 𝐴 + 1 ) 0 ) + 5 ) = ( 0 + 5 ) |
| 32 |
31 8
|
eqtri |
⊢ ( ( 0 · ; ( 𝐴 + 1 ) 0 ) + 5 ) = 5 |
| 33 |
1 2 15 6 7 16 19 28 32
|
decma |
⊢ ( ( ; 𝐴 0 · ; ( 𝐴 + 1 ) 0 ) + ( 5 · 5 ) ) = ; ; ( 𝐴 · ( 𝐴 + 1 ) ) 2 5 |
| 34 |
14 33
|
eqtri |
⊢ ( ; 𝐴 5 · ; 𝐴 5 ) = ; ; ( 𝐴 · ( 𝐴 + 1 ) ) 2 5 |