Metamath Proof Explorer
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021) (Revised by AV, 8-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
decle.1 |
⊢ 𝐴 ∈ ℕ0 |
|
|
decle.2 |
⊢ 𝐵 ∈ ℕ0 |
|
|
decle.3 |
⊢ 𝐶 ∈ ℕ0 |
|
|
decle.4 |
⊢ 𝐵 ≤ 𝐶 |
|
Assertion |
decle |
⊢ ; 𝐴 𝐵 ≤ ; 𝐴 𝐶 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decle.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decle.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decle.3 |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
decle.4 |
⊢ 𝐵 ≤ 𝐶 |
| 5 |
2
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
| 6 |
3
|
nn0rei |
⊢ 𝐶 ∈ ℝ |
| 7 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
| 8 |
7 1
|
nn0mulcli |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 9 |
8
|
nn0rei |
⊢ ( ; 1 0 · 𝐴 ) ∈ ℝ |
| 10 |
5 6 9
|
leadd2i |
⊢ ( 𝐵 ≤ 𝐶 ↔ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ≤ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) ) |
| 11 |
4 10
|
mpbi |
⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ≤ ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 12 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 13 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
| 14 |
11 12 13
|
3brtr4i |
⊢ ; 𝐴 𝐵 ≤ ; 𝐴 𝐶 |