Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (unequal higher places).  (Contributed by Mario Carneiro, 18-Feb-2014)  (Revised by AV, 6-Sep-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						declt.a | 
						⊢ 𝐴  ∈  ℕ0  | 
					
					
						 | 
						 | 
						declt.b | 
						⊢ 𝐵  ∈  ℕ0  | 
					
					
						 | 
						 | 
						decltc.c | 
						⊢ 𝐶  ∈  ℕ0  | 
					
					
						 | 
						 | 
						decltc.d | 
						⊢ 𝐷  ∈  ℕ0  | 
					
					
						 | 
						 | 
						decltc.s | 
						⊢ 𝐶  <  ; 1 0  | 
					
					
						 | 
						 | 
						decltc.l | 
						⊢ 𝐴  <  𝐵  | 
					
				
					 | 
					Assertion | 
					decltc | 
					⊢  ; 𝐴 𝐶  <  ; 𝐵 𝐷  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							declt.a | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 2 | 
							
								
							 | 
							declt.b | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							decltc.c | 
							⊢ 𝐶  ∈  ℕ0  | 
						
						
							| 4 | 
							
								
							 | 
							decltc.d | 
							⊢ 𝐷  ∈  ℕ0  | 
						
						
							| 5 | 
							
								
							 | 
							decltc.s | 
							⊢ 𝐶  <  ; 1 0  | 
						
						
							| 6 | 
							
								
							 | 
							decltc.l | 
							⊢ 𝐴  <  𝐵  | 
						
						
							| 7 | 
							
								
							 | 
							10nn | 
							⊢ ; 1 0  ∈  ℕ  | 
						
						
							| 8 | 
							
								7 1 2 3 4 5 6
							 | 
							numltc | 
							⊢ ( ( ; 1 0  ·  𝐴 )  +  𝐶 )  <  ( ( ; 1 0  ·  𝐵 )  +  𝐷 )  | 
						
						
							| 9 | 
							
								
							 | 
							dfdec10 | 
							⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 )  | 
						
						
							| 10 | 
							
								
							 | 
							dfdec10 | 
							⊢ ; 𝐵 𝐷  =  ( ( ; 1 0  ·  𝐵 )  +  𝐷 )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3brtr4i | 
							⊢ ; 𝐴 𝐶  <  ; 𝐵 𝐷  |