Step |
Hyp |
Ref |
Expression |
1 |
|
numlt.1 |
⊢ 𝑇 ∈ ℕ |
2 |
|
numlt.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
|
numlt.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
numltc.3 |
⊢ 𝐶 ∈ ℕ0 |
5 |
|
numltc.4 |
⊢ 𝐷 ∈ ℕ0 |
6 |
|
numltc.5 |
⊢ 𝐶 < 𝑇 |
7 |
|
numltc.6 |
⊢ 𝐴 < 𝐵 |
8 |
1 2 4 1 6
|
numlt |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
9 |
1
|
nnrei |
⊢ 𝑇 ∈ ℝ |
10 |
9
|
recni |
⊢ 𝑇 ∈ ℂ |
11 |
2
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
12 |
11
|
recni |
⊢ 𝐴 ∈ ℂ |
13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
14 |
10 12 13
|
adddii |
⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) |
15 |
10
|
mulid1i |
⊢ ( 𝑇 · 1 ) = 𝑇 |
16 |
15
|
oveq2i |
⊢ ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
17 |
14 16
|
eqtri |
⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
18 |
8 17
|
breqtrri |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · ( 𝐴 + 1 ) ) |
19 |
|
nn0ltp1le |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) ) |
20 |
2 3 19
|
mp2an |
⊢ ( 𝐴 < 𝐵 ↔ ( 𝐴 + 1 ) ≤ 𝐵 ) |
21 |
7 20
|
mpbi |
⊢ ( 𝐴 + 1 ) ≤ 𝐵 |
22 |
1
|
nngt0i |
⊢ 0 < 𝑇 |
23 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
24 |
11 23
|
ax-mp |
⊢ ( 𝐴 + 1 ) ∈ ℝ |
25 |
3
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
26 |
24 25 9
|
lemul2i |
⊢ ( 0 < 𝑇 → ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) ) |
27 |
22 26
|
ax-mp |
⊢ ( ( 𝐴 + 1 ) ≤ 𝐵 ↔ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) |
28 |
21 27
|
mpbi |
⊢ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) |
29 |
9 11
|
remulcli |
⊢ ( 𝑇 · 𝐴 ) ∈ ℝ |
30 |
4
|
nn0rei |
⊢ 𝐶 ∈ ℝ |
31 |
29 30
|
readdcli |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) ∈ ℝ |
32 |
9 24
|
remulcli |
⊢ ( 𝑇 · ( 𝐴 + 1 ) ) ∈ ℝ |
33 |
9 25
|
remulcli |
⊢ ( 𝑇 · 𝐵 ) ∈ ℝ |
34 |
31 32 33
|
ltletri |
⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · ( 𝐴 + 1 ) ) ∧ ( 𝑇 · ( 𝐴 + 1 ) ) ≤ ( 𝑇 · 𝐵 ) ) → ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) ) |
35 |
18 28 34
|
mp2an |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) |
36 |
33 5
|
nn0addge1i |
⊢ ( 𝑇 · 𝐵 ) ≤ ( ( 𝑇 · 𝐵 ) + 𝐷 ) |
37 |
5
|
nn0rei |
⊢ 𝐷 ∈ ℝ |
38 |
33 37
|
readdcli |
⊢ ( ( 𝑇 · 𝐵 ) + 𝐷 ) ∈ ℝ |
39 |
31 33 38
|
ltletri |
⊢ ( ( ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( 𝑇 · 𝐵 ) ∧ ( 𝑇 · 𝐵 ) ≤ ( ( 𝑇 · 𝐵 ) + 𝐷 ) ) → ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐵 ) + 𝐷 ) ) |
40 |
35 36 39
|
mp2an |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐶 ) < ( ( 𝑇 · 𝐵 ) + 𝐷 ) |