| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numlt.1 | 
							 |-  T e. NN  | 
						
						
							| 2 | 
							
								
							 | 
							numlt.2 | 
							 |-  A e. NN0  | 
						
						
							| 3 | 
							
								
							 | 
							numlt.3 | 
							 |-  B e. NN0  | 
						
						
							| 4 | 
							
								
							 | 
							numltc.3 | 
							 |-  C e. NN0  | 
						
						
							| 5 | 
							
								
							 | 
							numltc.4 | 
							 |-  D e. NN0  | 
						
						
							| 6 | 
							
								
							 | 
							numltc.5 | 
							 |-  C < T  | 
						
						
							| 7 | 
							
								
							 | 
							numltc.6 | 
							 |-  A < B  | 
						
						
							| 8 | 
							
								1 2 4 1 6
							 | 
							numlt | 
							 |-  ( ( T x. A ) + C ) < ( ( T x. A ) + T )  | 
						
						
							| 9 | 
							
								1
							 | 
							nnrei | 
							 |-  T e. RR  | 
						
						
							| 10 | 
							
								9
							 | 
							recni | 
							 |-  T e. CC  | 
						
						
							| 11 | 
							
								2
							 | 
							nn0rei | 
							 |-  A e. RR  | 
						
						
							| 12 | 
							
								11
							 | 
							recni | 
							 |-  A e. CC  | 
						
						
							| 13 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 14 | 
							
								10 12 13
							 | 
							adddii | 
							 |-  ( T x. ( A + 1 ) ) = ( ( T x. A ) + ( T x. 1 ) )  | 
						
						
							| 15 | 
							
								10
							 | 
							mulridi | 
							 |-  ( T x. 1 ) = T  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2i | 
							 |-  ( ( T x. A ) + ( T x. 1 ) ) = ( ( T x. A ) + T )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqtri | 
							 |-  ( T x. ( A + 1 ) ) = ( ( T x. A ) + T )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							breqtrri | 
							 |-  ( ( T x. A ) + C ) < ( T x. ( A + 1 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nn0ltp1le | 
							 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A < B <-> ( A + 1 ) <_ B ) )  | 
						
						
							| 20 | 
							
								2 3 19
							 | 
							mp2an | 
							 |-  ( A < B <-> ( A + 1 ) <_ B )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							mpbi | 
							 |-  ( A + 1 ) <_ B  | 
						
						
							| 22 | 
							
								1
							 | 
							nngt0i | 
							 |-  0 < T  | 
						
						
							| 23 | 
							
								
							 | 
							peano2re | 
							 |-  ( A e. RR -> ( A + 1 ) e. RR )  | 
						
						
							| 24 | 
							
								11 23
							 | 
							ax-mp | 
							 |-  ( A + 1 ) e. RR  | 
						
						
							| 25 | 
							
								3
							 | 
							nn0rei | 
							 |-  B e. RR  | 
						
						
							| 26 | 
							
								24 25 9
							 | 
							lemul2i | 
							 |-  ( 0 < T -> ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							ax-mp | 
							 |-  ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							mpbi | 
							 |-  ( T x. ( A + 1 ) ) <_ ( T x. B )  | 
						
						
							| 29 | 
							
								9 11
							 | 
							remulcli | 
							 |-  ( T x. A ) e. RR  | 
						
						
							| 30 | 
							
								4
							 | 
							nn0rei | 
							 |-  C e. RR  | 
						
						
							| 31 | 
							
								29 30
							 | 
							readdcli | 
							 |-  ( ( T x. A ) + C ) e. RR  | 
						
						
							| 32 | 
							
								9 24
							 | 
							remulcli | 
							 |-  ( T x. ( A + 1 ) ) e. RR  | 
						
						
							| 33 | 
							
								9 25
							 | 
							remulcli | 
							 |-  ( T x. B ) e. RR  | 
						
						
							| 34 | 
							
								31 32 33
							 | 
							ltletri | 
							 |-  ( ( ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) /\ ( T x. ( A + 1 ) ) <_ ( T x. B ) ) -> ( ( T x. A ) + C ) < ( T x. B ) )  | 
						
						
							| 35 | 
							
								18 28 34
							 | 
							mp2an | 
							 |-  ( ( T x. A ) + C ) < ( T x. B )  | 
						
						
							| 36 | 
							
								33 5
							 | 
							nn0addge1i | 
							 |-  ( T x. B ) <_ ( ( T x. B ) + D )  | 
						
						
							| 37 | 
							
								5
							 | 
							nn0rei | 
							 |-  D e. RR  | 
						
						
							| 38 | 
							
								33 37
							 | 
							readdcli | 
							 |-  ( ( T x. B ) + D ) e. RR  | 
						
						
							| 39 | 
							
								31 33 38
							 | 
							ltletri | 
							 |-  ( ( ( ( T x. A ) + C ) < ( T x. B ) /\ ( T x. B ) <_ ( ( T x. B ) + D ) ) -> ( ( T x. A ) + C ) < ( ( T x. B ) + D ) )  | 
						
						
							| 40 | 
							
								35 36 39
							 | 
							mp2an | 
							 |-  ( ( T x. A ) + C ) < ( ( T x. B ) + D )  |