Metamath Proof Explorer
Description: Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014)
|
|
Ref |
Expression |
|
Hypotheses |
numlt.1 |
⊢ 𝑇 ∈ ℕ |
|
|
numlt.2 |
⊢ 𝐴 ∈ ℕ0 |
|
|
numlt.3 |
⊢ 𝐵 ∈ ℕ0 |
|
|
numlt.4 |
⊢ 𝐶 ∈ ℕ |
|
|
numlt.5 |
⊢ 𝐵 < 𝐶 |
|
Assertion |
numlt |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) < ( ( 𝑇 · 𝐴 ) + 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
numlt.1 |
⊢ 𝑇 ∈ ℕ |
2 |
|
numlt.2 |
⊢ 𝐴 ∈ ℕ0 |
3 |
|
numlt.3 |
⊢ 𝐵 ∈ ℕ0 |
4 |
|
numlt.4 |
⊢ 𝐶 ∈ ℕ |
5 |
|
numlt.5 |
⊢ 𝐵 < 𝐶 |
6 |
3
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
7 |
4
|
nnrei |
⊢ 𝐶 ∈ ℝ |
8 |
1
|
nnnn0i |
⊢ 𝑇 ∈ ℕ0 |
9 |
8 2
|
nn0mulcli |
⊢ ( 𝑇 · 𝐴 ) ∈ ℕ0 |
10 |
9
|
nn0rei |
⊢ ( 𝑇 · 𝐴 ) ∈ ℝ |
11 |
6 7 10
|
ltadd2i |
⊢ ( 𝐵 < 𝐶 ↔ ( ( 𝑇 · 𝐴 ) + 𝐵 ) < ( ( 𝑇 · 𝐴 ) + 𝐶 ) ) |
12 |
5 11
|
mpbi |
⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) < ( ( 𝑇 · 𝐴 ) + 𝐶 ) |