Metamath Proof Explorer
		
		
		
		Description:  Comparing two decimal integers (equal higher places).  (Contributed by Mario Carneiro, 18-Feb-2014)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						numlt.1 | 
						⊢ 𝑇  ∈  ℕ  | 
					
					
						 | 
						 | 
						numlt.2 | 
						⊢ 𝐴  ∈  ℕ0  | 
					
					
						 | 
						 | 
						numlt.3 | 
						⊢ 𝐵  ∈  ℕ0  | 
					
					
						 | 
						 | 
						numlt.4 | 
						⊢ 𝐶  ∈  ℕ  | 
					
					
						 | 
						 | 
						numlt.5 | 
						⊢ 𝐵  <  𝐶  | 
					
				
					 | 
					Assertion | 
					numlt | 
					⊢  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numlt.1 | 
							⊢ 𝑇  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							numlt.2 | 
							⊢ 𝐴  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							numlt.3 | 
							⊢ 𝐵  ∈  ℕ0  | 
						
						
							| 4 | 
							
								
							 | 
							numlt.4 | 
							⊢ 𝐶  ∈  ℕ  | 
						
						
							| 5 | 
							
								
							 | 
							numlt.5 | 
							⊢ 𝐵  <  𝐶  | 
						
						
							| 6 | 
							
								3
							 | 
							nn0rei | 
							⊢ 𝐵  ∈  ℝ  | 
						
						
							| 7 | 
							
								4
							 | 
							nnrei | 
							⊢ 𝐶  ∈  ℝ  | 
						
						
							| 8 | 
							
								1
							 | 
							nnnn0i | 
							⊢ 𝑇  ∈  ℕ0  | 
						
						
							| 9 | 
							
								8 2
							 | 
							nn0mulcli | 
							⊢ ( 𝑇  ·  𝐴 )  ∈  ℕ0  | 
						
						
							| 10 | 
							
								9
							 | 
							nn0rei | 
							⊢ ( 𝑇  ·  𝐴 )  ∈  ℝ  | 
						
						
							| 11 | 
							
								6 7 10
							 | 
							ltadd2i | 
							⊢ ( 𝐵  <  𝐶  ↔  ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							mpbi | 
							⊢ ( ( 𝑇  ·  𝐴 )  +  𝐵 )  <  ( ( 𝑇  ·  𝐴 )  +  𝐶 )  |