Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ablo | ⊢ AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cablo | ⊢ AbelOp | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cgr | ⊢ GrpOp | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 4 | crn | ⊢ ran 𝑔 |
| 6 | vy | ⊢ 𝑦 | |
| 7 | 3 | cv | ⊢ 𝑥 |
| 8 | 6 | cv | ⊢ 𝑦 |
| 9 | 7 8 4 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 10 | 8 7 4 | co | ⊢ ( 𝑦 𝑔 𝑥 ) |
| 11 | 9 10 | wceq | ⊢ ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
| 12 | 11 6 5 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
| 13 | 12 3 5 | wral | ⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) |
| 14 | 13 1 2 | crab | ⊢ { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |
| 15 | 0 14 | wceq | ⊢ AbelOp = { 𝑔 ∈ GrpOp ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( 𝑥 𝑔 𝑦 ) = ( 𝑦 𝑔 𝑥 ) } |