Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ablo | |- AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cablo | |- AbelOp |
|
| 1 | vg | |- g |
|
| 2 | cgr | |- GrpOp |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- g |
| 5 | 4 | crn | |- ran g |
| 6 | vy | |- y |
|
| 7 | 3 | cv | |- x |
| 8 | 6 | cv | |- y |
| 9 | 7 8 4 | co | |- ( x g y ) |
| 10 | 8 7 4 | co | |- ( y g x ) |
| 11 | 9 10 | wceq | |- ( x g y ) = ( y g x ) |
| 12 | 11 6 5 | wral | |- A. y e. ran g ( x g y ) = ( y g x ) |
| 13 | 12 3 5 | wral | |- A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) |
| 14 | 13 1 2 | crab | |- { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } |
| 15 | 0 14 | wceq | |- AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } |