| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cado |
⊢ adjℎ |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
vu |
⊢ 𝑢 |
| 3 |
1
|
cv |
⊢ 𝑡 |
| 4 |
|
chba |
⊢ ℋ |
| 5 |
4 4 3
|
wf |
⊢ 𝑡 : ℋ ⟶ ℋ |
| 6 |
2
|
cv |
⊢ 𝑢 |
| 7 |
4 4 6
|
wf |
⊢ 𝑢 : ℋ ⟶ ℋ |
| 8 |
|
vx |
⊢ 𝑥 |
| 9 |
|
vy |
⊢ 𝑦 |
| 10 |
8
|
cv |
⊢ 𝑥 |
| 11 |
10 3
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
| 12 |
|
csp |
⊢ ·ih |
| 13 |
9
|
cv |
⊢ 𝑦 |
| 14 |
11 13 12
|
co |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) |
| 15 |
13 6
|
cfv |
⊢ ( 𝑢 ‘ 𝑦 ) |
| 16 |
10 15 12
|
co |
⊢ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
| 17 |
14 16
|
wceq |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
| 18 |
17 9 4
|
wral |
⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
| 19 |
18 8 4
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
| 20 |
5 7 19
|
w3a |
⊢ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) |
| 21 |
20 1 2
|
copab |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) } |
| 22 |
0 21
|
wceq |
⊢ adjℎ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) } |