Step |
Hyp |
Ref |
Expression |
0 |
|
cado |
⊢ adjℎ |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
vu |
⊢ 𝑢 |
3 |
1
|
cv |
⊢ 𝑡 |
4 |
|
chba |
⊢ ℋ |
5 |
4 4 3
|
wf |
⊢ 𝑡 : ℋ ⟶ ℋ |
6 |
2
|
cv |
⊢ 𝑢 |
7 |
4 4 6
|
wf |
⊢ 𝑢 : ℋ ⟶ ℋ |
8 |
|
vx |
⊢ 𝑥 |
9 |
|
vy |
⊢ 𝑦 |
10 |
8
|
cv |
⊢ 𝑥 |
11 |
10 3
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
12 |
|
csp |
⊢ ·ih |
13 |
9
|
cv |
⊢ 𝑦 |
14 |
11 13 12
|
co |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) |
15 |
13 6
|
cfv |
⊢ ( 𝑢 ‘ 𝑦 ) |
16 |
10 15 12
|
co |
⊢ ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
17 |
14 16
|
wceq |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
18 |
17 9 4
|
wral |
⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
19 |
18 8 4
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) |
20 |
5 7 19
|
w3a |
⊢ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) |
21 |
20 1 2
|
copab |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) } |
22 |
0 21
|
wceq |
⊢ adjℎ = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑢 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑢 ‘ 𝑦 ) ) ) } |