Step |
Hyp |
Ref |
Expression |
0 |
|
cai |
⊢ AlgInd |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vk |
⊢ 𝑘 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
8 |
|
vv |
⊢ 𝑣 |
9 |
|
vf |
⊢ 𝑓 |
10 |
8
|
cv |
⊢ 𝑣 |
11 |
|
cmpl |
⊢ mPoly |
12 |
|
cress |
⊢ ↾s |
13 |
3
|
cv |
⊢ 𝑘 |
14 |
5 13 12
|
co |
⊢ ( 𝑤 ↾s 𝑘 ) |
15 |
10 14 11
|
co |
⊢ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) |
16 |
15 4
|
cfv |
⊢ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) |
17 |
|
ces |
⊢ evalSub |
18 |
10 5 17
|
co |
⊢ ( 𝑣 evalSub 𝑤 ) |
19 |
13 18
|
cfv |
⊢ ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) |
20 |
9
|
cv |
⊢ 𝑓 |
21 |
20 19
|
cfv |
⊢ ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) |
22 |
|
cid |
⊢ I |
23 |
22 10
|
cres |
⊢ ( I ↾ 𝑣 ) |
24 |
23 21
|
cfv |
⊢ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) |
25 |
9 16 24
|
cmpt |
⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) |
26 |
25
|
ccnv |
⊢ ◡ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) |
27 |
26
|
wfun |
⊢ Fun ◡ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) |
28 |
27 8 7
|
crab |
⊢ { 𝑣 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ Fun ◡ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) } |
29 |
1 3 2 7 28
|
cmpo |
⊢ ( 𝑤 ∈ V , 𝑘 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑣 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ Fun ◡ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) } ) |
30 |
0 29
|
wceq |
⊢ AlgInd = ( 𝑤 ∈ V , 𝑘 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ { 𝑣 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ Fun ◡ ( 𝑓 ∈ ( Base ‘ ( 𝑣 mPoly ( 𝑤 ↾s 𝑘 ) ) ) ↦ ( ( ( ( 𝑣 evalSub 𝑤 ) ‘ 𝑘 ) ‘ 𝑓 ) ‘ ( I ↾ 𝑣 ) ) ) } ) |