| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cai |
|- AlgInd |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vk |
|- k |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` w ) |
| 8 |
|
vv |
|- v |
| 9 |
|
vf |
|- f |
| 10 |
8
|
cv |
|- v |
| 11 |
|
cmpl |
|- mPoly |
| 12 |
|
cress |
|- |`s |
| 13 |
3
|
cv |
|- k |
| 14 |
5 13 12
|
co |
|- ( w |`s k ) |
| 15 |
10 14 11
|
co |
|- ( v mPoly ( w |`s k ) ) |
| 16 |
15 4
|
cfv |
|- ( Base ` ( v mPoly ( w |`s k ) ) ) |
| 17 |
|
ces |
|- evalSub |
| 18 |
10 5 17
|
co |
|- ( v evalSub w ) |
| 19 |
13 18
|
cfv |
|- ( ( v evalSub w ) ` k ) |
| 20 |
9
|
cv |
|- f |
| 21 |
20 19
|
cfv |
|- ( ( ( v evalSub w ) ` k ) ` f ) |
| 22 |
|
cid |
|- _I |
| 23 |
22 10
|
cres |
|- ( _I |` v ) |
| 24 |
23 21
|
cfv |
|- ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) |
| 25 |
9 16 24
|
cmpt |
|- ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) |
| 26 |
25
|
ccnv |
|- `' ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) |
| 27 |
26
|
wfun |
|- Fun `' ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) |
| 28 |
27 8 7
|
crab |
|- { v e. ~P ( Base ` w ) | Fun `' ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) } |
| 29 |
1 3 2 7 28
|
cmpo |
|- ( w e. _V , k e. ~P ( Base ` w ) |-> { v e. ~P ( Base ` w ) | Fun `' ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) } ) |
| 30 |
0 29
|
wceq |
|- AlgInd = ( w e. _V , k e. ~P ( Base ` w ) |-> { v e. ~P ( Base ` w ) | Fun `' ( f e. ( Base ` ( v mPoly ( w |`s k ) ) ) |-> ( ( ( ( v evalSub w ) ` k ) ` f ) ` ( _I |` v ) ) ) } ) |