Description: An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth ), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-altop | ⊢ ⟪ 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | caltop | ⊢ ⟪ 𝐴 , 𝐵 ⟫ |
| 3 | 0 | csn | ⊢ { 𝐴 } |
| 4 | 1 | csn | ⊢ { 𝐵 } |
| 5 | 0 4 | cpr | ⊢ { 𝐴 , { 𝐵 } } |
| 6 | 3 5 | cpr | ⊢ { { 𝐴 } , { 𝐴 , { 𝐵 } } } |
| 7 | 2 6 | wceq | ⊢ ⟪ 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } } |