Metamath Proof Explorer


Definition df-altop

Description: An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth ), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion df-altop 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 caltop 𝐴 , 𝐵
3 0 csn { 𝐴 }
4 1 csn { 𝐵 }
5 0 4 cpr { 𝐴 , { 𝐵 } }
6 3 5 cpr { { 𝐴 } , { 𝐴 , { 𝐵 } } }
7 2 6 wceq 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } }