Metamath Proof Explorer


Definition df-altxp

Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion df-altxp ( 𝐴 ×× 𝐵 ) = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 caltxp ( 𝐴 ×× 𝐵 )
3 vz 𝑧
4 vx 𝑥
5 vy 𝑦
6 3 cv 𝑧
7 4 cv 𝑥
8 5 cv 𝑦
9 7 8 caltop 𝑥 , 𝑦
10 6 9 wceq 𝑧 = ⟪ 𝑥 , 𝑦
11 10 5 1 wrex 𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦
12 11 4 0 wrex 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦
13 12 3 cab { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }
14 2 13 wceq ( 𝐴 ×× 𝐵 ) = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }