Metamath Proof Explorer


Theorem altopex

Description: Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopex 𝐴 , 𝐵 ⟫ ∈ V

Proof

Step Hyp Ref Expression
1 df-altop 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } }
2 prex { { 𝐴 } , { 𝐴 , { 𝐵 } } } ∈ V
3 1 2 eqeltri 𝐴 , 𝐵 ⟫ ∈ V