Metamath Proof Explorer
Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)
|
|
Ref |
Expression |
|
Assertion |
df-altxp |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
|
1 |
|
cB |
|
2 |
0 1
|
caltxp |
|
3 |
|
vz |
|
4 |
|
vx |
|
5 |
|
vy |
|
6 |
3
|
cv |
|
7 |
4
|
cv |
|
8 |
5
|
cv |
|
9 |
7 8
|
caltop |
|
10 |
6 9
|
wceq |
|
11 |
10 5 1
|
wrex |
|
12 |
11 4 0
|
wrex |
|
13 |
12 3
|
cab |
|
14 |
2 13
|
wceq |
|