Metamath Proof Explorer


Definition df-altxp

Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion df-altxp A ×× B = z | x A y B z = x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 0 1 caltxp class A ×× B
3 vz setvar z
4 vx setvar x
5 vy setvar y
6 3 cv setvar z
7 4 cv setvar x
8 5 cv setvar y
9 7 8 caltop class x y
10 6 9 wceq wff z = x y
11 10 5 1 wrex wff y B z = x y
12 11 4 0 wrex wff x A y B z = x y
13 12 3 cab class z | x A y B z = x y
14 2 13 wceq wff A ×× B = z | x A y B z = x y