Metamath Proof Explorer
Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)
|
|
Ref |
Expression |
|
Assertion |
df-altxp |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
|
| 1 |
|
cB |
|
| 2 |
0 1
|
caltxp |
|
| 3 |
|
vz |
|
| 4 |
|
vx |
|
| 5 |
|
vy |
|
| 6 |
3
|
cv |
|
| 7 |
4
|
cv |
|
| 8 |
5
|
cv |
|
| 9 |
7 8
|
caltop |
|
| 10 |
6 9
|
wceq |
|
| 11 |
10 5 1
|
wrex |
|
| 12 |
11 4 0
|
wrex |
|
| 13 |
12 3
|
cab |
|
| 14 |
2 13
|
wceq |
|