Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-altxp | |- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cB | |- B |
|
| 2 | 0 1 | caltxp | |- ( A XX. B ) |
| 3 | vz | |- z |
|
| 4 | vx | |- x |
|
| 5 | vy | |- y |
|
| 6 | 3 | cv | |- z |
| 7 | 4 | cv | |- x |
| 8 | 5 | cv | |- y |
| 9 | 7 8 | caltop | |- << x , y >> |
| 10 | 6 9 | wceq | |- z = << x , y >> |
| 11 | 10 5 1 | wrex | |- E. y e. B z = << x , y >> |
| 12 | 11 4 0 | wrex | |- E. x e. A E. y e. B z = << x , y >> |
| 13 | 12 3 | cab | |- { z | E. x e. A E. y e. B z = << x , y >> } |
| 14 | 2 13 | wceq | |- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> } |