Metamath Proof Explorer


Definition df-altxp

Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion df-altxp
|- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 caltxp
 |-  ( A XX. B )
3 vz
 |-  z
4 vx
 |-  x
5 vy
 |-  y
6 3 cv
 |-  z
7 4 cv
 |-  x
8 5 cv
 |-  y
9 7 8 caltop
 |-  << x , y >>
10 6 9 wceq
 |-  z = << x , y >>
11 10 5 1 wrex
 |-  E. y e. B z = << x , y >>
12 11 4 0 wrex
 |-  E. x e. A E. y e. B z = << x , y >>
13 12 3 cab
 |-  { z | E. x e. A E. y e. B z = << x , y >> }
14 2 13 wceq
 |-  ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> }