Description: Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | df-altxp | |- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cB | |- B |
|
2 | 0 1 | caltxp | |- ( A XX. B ) |
3 | vz | |- z |
|
4 | vx | |- x |
|
5 | vy | |- y |
|
6 | 3 | cv | |- z |
7 | 4 | cv | |- x |
8 | 5 | cv | |- y |
9 | 7 8 | caltop | |- << x , y >> |
10 | 6 9 | wceq | |- z = << x , y >> |
11 | 10 5 1 | wrex | |- E. y e. B z = << x , y >> |
12 | 11 4 0 | wrex | |- E. x e. A E. y e. B z = << x , y >> |
13 | 12 3 | cab | |- { z | E. x e. A E. y e. B z = << x , y >> } |
14 | 2 13 | wceq | |- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> } |