Description: Definition of the auxiliary function inftyexpitau parameterizing the circle at infinity CCinfty in CCbar . We use coupling with { R. } to simplify the proof of bj-inftyexpitaudisj . (Contributed by BJ, 22-Jan-2023) The precise definition is irrelevant and should generally not be used. TODO: prove only the necessary lemmas to prove |- ( A e. RR /\ B e. RR ) -> ( ( inftyexpitauA ) = ( inftyexpitauB ) <-> ( A - B ) e. ZZ ) ) . (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bj-inftyexpitau | ā¢ +āeiĻ = ( š„ ā ā ā¦ āØ ( {R ā ( 1st ā š„ ) ) , { R } ā© ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cinftyexpitau | ā¢ +āeiĻ | |
1 | vx | ā¢ š„ | |
2 | cr | ā¢ ā | |
3 | cfractemp | ā¢ {R | |
4 | c1st | ā¢ 1st | |
5 | 1 | cv | ā¢ š„ |
6 | 5 4 | cfv | ā¢ ( 1st ā š„ ) |
7 | 6 3 | cfv | ā¢ ( {R ā ( 1st ā š„ ) ) |
8 | cnr | ā¢ R | |
9 | 8 | csn | ā¢ { R } |
10 | 7 9 | cop | ā¢ āØ ( {R ā ( 1st ā š„ ) ) , { R } ā© |
11 | 1 2 10 | cmpt | ā¢ ( š„ ā ā ā¦ āØ ( {R ā ( 1st ā š„ ) ) , { R } ā© ) |
12 | 0 11 | wceq | ā¢ +āeiĻ = ( š„ ā ā ā¦ āØ ( {R ā ( 1st ā š„ ) ) , { R } ā© ) |