| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccarsg |
⊢ toCaraSiga |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
1
|
cv |
⊢ 𝑚 |
| 5 |
4
|
cdm |
⊢ dom 𝑚 |
| 6 |
5
|
cuni |
⊢ ∪ dom 𝑚 |
| 7 |
6
|
cpw |
⊢ 𝒫 ∪ dom 𝑚 |
| 8 |
|
ve |
⊢ 𝑒 |
| 9 |
8
|
cv |
⊢ 𝑒 |
| 10 |
3
|
cv |
⊢ 𝑎 |
| 11 |
9 10
|
cin |
⊢ ( 𝑒 ∩ 𝑎 ) |
| 12 |
11 4
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) |
| 13 |
|
cxad |
⊢ +𝑒 |
| 14 |
9 10
|
cdif |
⊢ ( 𝑒 ∖ 𝑎 ) |
| 15 |
14 4
|
cfv |
⊢ ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) |
| 16 |
12 15 13
|
co |
⊢ ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) |
| 17 |
9 4
|
cfv |
⊢ ( 𝑚 ‘ 𝑒 ) |
| 18 |
16 17
|
wceq |
⊢ ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) |
| 19 |
18 8 7
|
wral |
⊢ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) |
| 20 |
19 3 7
|
crab |
⊢ { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } |
| 21 |
1 2 20
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } ) |
| 22 |
0 21
|
wceq |
⊢ toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } ) |