Metamath Proof Explorer


Definition df-carsg

Description: Define a function constructing Caratheodory measurable sets for a given outer measure. See carsgval for its value. Definition 1.11.2 of Bogachev p. 41. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Assertion df-carsg toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccarsg toCaraSiga
1 vm 𝑚
2 cvv V
3 va 𝑎
4 1 cv 𝑚
5 4 cdm dom 𝑚
6 5 cuni dom 𝑚
7 6 cpw 𝒫 dom 𝑚
8 ve 𝑒
9 8 cv 𝑒
10 3 cv 𝑎
11 9 10 cin ( 𝑒𝑎 )
12 11 4 cfv ( 𝑚 ‘ ( 𝑒𝑎 ) )
13 cxad +𝑒
14 9 10 cdif ( 𝑒𝑎 )
15 14 4 cfv ( 𝑚 ‘ ( 𝑒𝑎 ) )
16 12 15 13 co ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) )
17 9 4 cfv ( 𝑚𝑒 )
18 16 17 wceq ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 )
19 18 8 7 wral 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 )
20 19 3 7 crab { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) }
21 1 2 20 cmpt ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) } )
22 0 21 wceq toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) } )