| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccarsg | ⊢ toCaraSiga | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 | 1 | cv | ⊢ 𝑚 | 
						
							| 5 | 4 | cdm | ⊢ dom  𝑚 | 
						
							| 6 | 5 | cuni | ⊢ ∪  dom  𝑚 | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ∪  dom  𝑚 | 
						
							| 8 |  | ve | ⊢ 𝑒 | 
						
							| 9 | 8 | cv | ⊢ 𝑒 | 
						
							| 10 | 3 | cv | ⊢ 𝑎 | 
						
							| 11 | 9 10 | cin | ⊢ ( 𝑒  ∩  𝑎 ) | 
						
							| 12 | 11 4 | cfv | ⊢ ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) ) | 
						
							| 13 |  | cxad | ⊢  +𝑒 | 
						
							| 14 | 9 10 | cdif | ⊢ ( 𝑒  ∖  𝑎 ) | 
						
							| 15 | 14 4 | cfv | ⊢ ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) | 
						
							| 16 | 12 15 13 | co | ⊢ ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) ) | 
						
							| 17 | 9 4 | cfv | ⊢ ( 𝑚 ‘ 𝑒 ) | 
						
							| 18 | 16 17 | wceq | ⊢ ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑚 ‘ 𝑒 ) | 
						
							| 19 | 18 8 7 | wral | ⊢ ∀ 𝑒  ∈  𝒫  ∪  dom  𝑚 ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑚 ‘ 𝑒 ) | 
						
							| 20 | 19 3 7 | crab | ⊢ { 𝑎  ∈  𝒫  ∪  dom  𝑚  ∣  ∀ 𝑒  ∈  𝒫  ∪  dom  𝑚 ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑚 ‘ 𝑒 ) } | 
						
							| 21 | 1 2 20 | cmpt | ⊢ ( 𝑚  ∈  V  ↦  { 𝑎  ∈  𝒫  ∪  dom  𝑚  ∣  ∀ 𝑒  ∈  𝒫  ∪  dom  𝑚 ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑚 ‘ 𝑒 ) } ) | 
						
							| 22 | 0 21 | wceq | ⊢ toCaraSiga  =  ( 𝑚  ∈  V  ↦  { 𝑎  ∈  𝒫  ∪  dom  𝑚  ∣  ∀ 𝑒  ∈  𝒫  ∪  dom  𝑚 ( ( 𝑚 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑚 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑚 ‘ 𝑒 ) } ) |