Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
df-carsg |
⊢ toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
5 |
4
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 ) |
6 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = 𝒫 𝑂 ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑀 = 𝒫 𝑂 ) |
8 |
5 7
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = 𝒫 𝑂 ) |
9 |
8
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = ∪ 𝒫 𝑂 ) |
10 |
|
unipw |
⊢ ∪ 𝒫 𝑂 = 𝑂 |
11 |
9 10
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = 𝑂 ) |
12 |
11
|
pweqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → 𝒫 ∪ dom 𝑚 = 𝒫 𝑂 ) |
13 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) = ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) ) |
14 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) = ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) ) |
16 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 𝑒 ) = ( 𝑀 ‘ 𝑒 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
19 |
12 18
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
20 |
12 19
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ) |
21 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ V ) |
22 |
2 21
|
fexd |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
23 |
|
pwexg |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V ) |
24 |
|
rabexg |
⊢ ( 𝒫 𝑂 ∈ V → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ∈ V ) |
25 |
1 23 24
|
3syl |
⊢ ( 𝜑 → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ∈ V ) |
26 |
3 20 22 25
|
fvmptd2 |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ) |