| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
df-carsg |
⊢ toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
| 5 |
4
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 ) |
| 6 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = 𝒫 𝑂 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑀 = 𝒫 𝑂 ) |
| 8 |
5 7
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → dom 𝑚 = 𝒫 𝑂 ) |
| 9 |
8
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = ∪ 𝒫 𝑂 ) |
| 10 |
|
unipw |
⊢ ∪ 𝒫 𝑂 = 𝑂 |
| 11 |
9 10
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ∪ dom 𝑚 = 𝑂 ) |
| 12 |
11
|
pweqd |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → 𝒫 ∪ dom 𝑚 = 𝒫 𝑂 ) |
| 13 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) = ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) ) |
| 14 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) = ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) ) |
| 16 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 𝑒 ) = ( 𝑀 ‘ 𝑒 ) ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
| 19 |
12 18
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) ↔ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
| 20 |
12 19
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ 𝑚 = 𝑀 ) → { 𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 ∪ dom 𝑚 ( ( 𝑚 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑚 ‘ 𝑒 ) } = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ) |
| 21 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝑂 ∈ V ) |
| 22 |
2 21
|
fexd |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 23 |
|
pwexg |
⊢ ( 𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ V ) |
| 24 |
|
rabexg |
⊢ ( 𝒫 𝑂 ∈ V → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ∈ V ) |
| 25 |
1 23 24
|
3syl |
⊢ ( 𝜑 → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ∈ V ) |
| 26 |
3 20 22 25
|
fvmptd2 |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ) |