Metamath Proof Explorer


Theorem carsgval

Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
Assertion carsgval ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 df-carsg toCaraSiga = ( 𝑚 ∈ V ↦ { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) } )
4 simpr ( ( 𝜑𝑚 = 𝑀 ) → 𝑚 = 𝑀 )
5 4 dmeqd ( ( 𝜑𝑚 = 𝑀 ) → dom 𝑚 = dom 𝑀 )
6 2 fdmd ( 𝜑 → dom 𝑀 = 𝒫 𝑂 )
7 6 adantr ( ( 𝜑𝑚 = 𝑀 ) → dom 𝑀 = 𝒫 𝑂 )
8 5 7 eqtrd ( ( 𝜑𝑚 = 𝑀 ) → dom 𝑚 = 𝒫 𝑂 )
9 8 unieqd ( ( 𝜑𝑚 = 𝑀 ) → dom 𝑚 = 𝒫 𝑂 )
10 unipw 𝒫 𝑂 = 𝑂
11 9 10 eqtrdi ( ( 𝜑𝑚 = 𝑀 ) → dom 𝑚 = 𝑂 )
12 11 pweqd ( ( 𝜑𝑚 = 𝑀 ) → 𝒫 dom 𝑚 = 𝒫 𝑂 )
13 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒𝑎 ) ) = ( 𝑀 ‘ ( 𝑒𝑎 ) ) )
14 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 ‘ ( 𝑒𝑎 ) ) = ( 𝑀 ‘ ( 𝑒𝑎 ) ) )
15 13 14 oveq12d ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) )
16 fveq1 ( 𝑚 = 𝑀 → ( 𝑚𝑒 ) = ( 𝑀𝑒 ) )
17 15 16 eqeq12d ( 𝑚 = 𝑀 → ( ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) ) )
18 17 adantl ( ( 𝜑𝑚 = 𝑀 ) → ( ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) ↔ ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) ) )
19 12 18 raleqbidv ( ( 𝜑𝑚 = 𝑀 ) → ( ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) ↔ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) ) )
20 12 19 rabeqbidv ( ( 𝜑𝑚 = 𝑀 ) → { 𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀ 𝑒 ∈ 𝒫 dom 𝑚 ( ( 𝑚 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑚 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑚𝑒 ) } = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } )
21 1 pwexd ( 𝜑 → 𝒫 𝑂 ∈ V )
22 fex ( ( 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ∧ 𝒫 𝑂 ∈ V ) → 𝑀 ∈ V )
23 2 21 22 syl2anc ( 𝜑𝑀 ∈ V )
24 pwexg ( 𝑂𝑉 → 𝒫 𝑂 ∈ V )
25 rabexg ( 𝒫 𝑂 ∈ V → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } ∈ V )
26 1 24 25 3syl ( 𝜑 → { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } ∈ V )
27 3 20 23 26 fvmptd2 ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } )