Description: Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | carsgval.1 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) | |
| carsgval.2 | ⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) | ||
| Assertion | carsgcl | ⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | carsgval.1 | ⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) | |
| 2 | carsgval.2 | ⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) | |
| 3 | 1 2 | carsgval | ⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ) | 
| 4 | ssrab2 | ⊢ { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑎 ) ) ) = ( 𝑀 ‘ 𝑒 ) } ⊆ 𝒫 𝑂 | |
| 5 | 3 4 | eqsstrdi | ⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) |