Metamath Proof Explorer


Theorem carsgcl

Description: Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
Assertion carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 1 2 carsgval ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) = { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } )
4 ssrab2 { 𝑎 ∈ 𝒫 𝑂 ∣ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒𝑎 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒𝑎 ) ) ) = ( 𝑀𝑒 ) } ⊆ 𝒫 𝑂
5 3 4 eqsstrdi ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )