Metamath Proof Explorer


Theorem carsgcl

Description: Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
Assertion carsgcl φ toCaraSiga M 𝒫 O

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 1 2 carsgval φ toCaraSiga M = a 𝒫 O | e 𝒫 O M e a + 𝑒 M e a = M e
4 ssrab2 a 𝒫 O | e 𝒫 O M e a + 𝑒 M e a = M e 𝒫 O
5 3 4 eqsstrdi φ toCaraSiga M 𝒫 O