Metamath Proof Explorer


Theorem carsgcl

Description: Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1
|- ( ph -> O e. V )
carsgval.2
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) )
Assertion carsgcl
|- ( ph -> ( toCaraSiga ` M ) C_ ~P O )

Proof

Step Hyp Ref Expression
1 carsgval.1
 |-  ( ph -> O e. V )
2 carsgval.2
 |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) )
3 1 2 carsgval
 |-  ( ph -> ( toCaraSiga ` M ) = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } )
4 ssrab2
 |-  { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } C_ ~P O
5 3 4 eqsstrdi
 |-  ( ph -> ( toCaraSiga ` M ) C_ ~P O )