Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
3 |
|
df-carsg |
|- toCaraSiga = ( m e. _V |-> { a e. ~P U. dom m | A. e e. ~P U. dom m ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( m ` e ) } ) |
4 |
|
simpr |
|- ( ( ph /\ m = M ) -> m = M ) |
5 |
4
|
dmeqd |
|- ( ( ph /\ m = M ) -> dom m = dom M ) |
6 |
2
|
fdmd |
|- ( ph -> dom M = ~P O ) |
7 |
6
|
adantr |
|- ( ( ph /\ m = M ) -> dom M = ~P O ) |
8 |
5 7
|
eqtrd |
|- ( ( ph /\ m = M ) -> dom m = ~P O ) |
9 |
8
|
unieqd |
|- ( ( ph /\ m = M ) -> U. dom m = U. ~P O ) |
10 |
|
unipw |
|- U. ~P O = O |
11 |
9 10
|
eqtrdi |
|- ( ( ph /\ m = M ) -> U. dom m = O ) |
12 |
11
|
pweqd |
|- ( ( ph /\ m = M ) -> ~P U. dom m = ~P O ) |
13 |
|
fveq1 |
|- ( m = M -> ( m ` ( e i^i a ) ) = ( M ` ( e i^i a ) ) ) |
14 |
|
fveq1 |
|- ( m = M -> ( m ` ( e \ a ) ) = ( M ` ( e \ a ) ) ) |
15 |
13 14
|
oveq12d |
|- ( m = M -> ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) ) |
16 |
|
fveq1 |
|- ( m = M -> ( m ` e ) = ( M ` e ) ) |
17 |
15 16
|
eqeq12d |
|- ( m = M -> ( ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( m ` e ) <-> ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ m = M ) -> ( ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( m ` e ) <-> ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) ) ) |
19 |
12 18
|
raleqbidv |
|- ( ( ph /\ m = M ) -> ( A. e e. ~P U. dom m ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( m ` e ) <-> A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) ) ) |
20 |
12 19
|
rabeqbidv |
|- ( ( ph /\ m = M ) -> { a e. ~P U. dom m | A. e e. ~P U. dom m ( ( m ` ( e i^i a ) ) +e ( m ` ( e \ a ) ) ) = ( m ` e ) } = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) |
21 |
1
|
pwexd |
|- ( ph -> ~P O e. _V ) |
22 |
2 21
|
fexd |
|- ( ph -> M e. _V ) |
23 |
|
pwexg |
|- ( O e. V -> ~P O e. _V ) |
24 |
|
rabexg |
|- ( ~P O e. _V -> { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } e. _V ) |
25 |
1 23 24
|
3syl |
|- ( ph -> { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } e. _V ) |
26 |
3 20 22 25
|
fvmptd2 |
|- ( ph -> ( toCaraSiga ` M ) = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) |