Metamath Proof Explorer


Theorem elcarsg

Description: Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1
|- ( ph -> O e. V )
carsgval.2
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) )
Assertion elcarsg
|- ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) )

Proof

Step Hyp Ref Expression
1 carsgval.1
 |-  ( ph -> O e. V )
2 carsgval.2
 |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) )
3 1 2 carsgval
 |-  ( ph -> ( toCaraSiga ` M ) = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } )
4 3 eleq2d
 |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) )
5 ineq2
 |-  ( a = A -> ( e i^i a ) = ( e i^i A ) )
6 5 fveq2d
 |-  ( a = A -> ( M ` ( e i^i a ) ) = ( M ` ( e i^i A ) ) )
7 difeq2
 |-  ( a = A -> ( e \ a ) = ( e \ A ) )
8 7 fveq2d
 |-  ( a = A -> ( M ` ( e \ a ) ) = ( M ` ( e \ A ) ) )
9 6 8 oveq12d
 |-  ( a = A -> ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) )
10 9 eqeq1d
 |-  ( a = A -> ( ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) )
11 10 ralbidv
 |-  ( a = A -> ( A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) )
12 11 elrab
 |-  ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) )
13 elex
 |-  ( A e. ~P O -> A e. _V )
14 13 a1i
 |-  ( ph -> ( A e. ~P O -> A e. _V ) )
15 1 adantr
 |-  ( ( ph /\ A C_ O ) -> O e. V )
16 simpr
 |-  ( ( ph /\ A C_ O ) -> A C_ O )
17 15 16 ssexd
 |-  ( ( ph /\ A C_ O ) -> A e. _V )
18 17 ex
 |-  ( ph -> ( A C_ O -> A e. _V ) )
19 elpwg
 |-  ( A e. _V -> ( A e. ~P O <-> A C_ O ) )
20 19 a1i
 |-  ( ph -> ( A e. _V -> ( A e. ~P O <-> A C_ O ) ) )
21 14 18 20 pm5.21ndd
 |-  ( ph -> ( A e. ~P O <-> A C_ O ) )
22 21 anbi1d
 |-  ( ph -> ( ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) )
23 12 22 syl5bb
 |-  ( ph -> ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) )
24 4 23 bitrd
 |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) )