| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 | 1 2 | carsgval |  |-  ( ph -> ( toCaraSiga ` M ) = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) | 
						
							| 4 | 3 | eleq2d |  |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) ) | 
						
							| 5 |  | ineq2 |  |-  ( a = A -> ( e i^i a ) = ( e i^i A ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( a = A -> ( M ` ( e i^i a ) ) = ( M ` ( e i^i A ) ) ) | 
						
							| 7 |  | difeq2 |  |-  ( a = A -> ( e \ a ) = ( e \ A ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( a = A -> ( M ` ( e \ a ) ) = ( M ` ( e \ A ) ) ) | 
						
							| 9 | 6 8 | oveq12d |  |-  ( a = A -> ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( a = A -> ( ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) | 
						
							| 11 | 10 | ralbidv |  |-  ( a = A -> ( A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) | 
						
							| 12 | 11 | elrab |  |-  ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) | 
						
							| 13 |  | elex |  |-  ( A e. ~P O -> A e. _V ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( A e. ~P O -> A e. _V ) ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ A C_ O ) -> O e. V ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ A C_ O ) -> A C_ O ) | 
						
							| 17 | 15 16 | ssexd |  |-  ( ( ph /\ A C_ O ) -> A e. _V ) | 
						
							| 18 | 17 | ex |  |-  ( ph -> ( A C_ O -> A e. _V ) ) | 
						
							| 19 |  | elpwg |  |-  ( A e. _V -> ( A e. ~P O <-> A C_ O ) ) | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( A e. _V -> ( A e. ~P O <-> A C_ O ) ) ) | 
						
							| 21 | 14 18 20 | pm5.21ndd |  |-  ( ph -> ( A e. ~P O <-> A C_ O ) ) | 
						
							| 22 | 21 | anbi1d |  |-  ( ph -> ( ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) | 
						
							| 23 | 12 22 | bitrid |  |-  ( ph -> ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) | 
						
							| 24 | 4 23 | bitrd |  |-  ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) |