Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
3 |
1 2
|
carsgval |
|- ( ph -> ( toCaraSiga ` M ) = { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) |
4 |
3
|
eleq2d |
|- ( ph -> ( A e. ( toCaraSiga ` M ) <-> A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } ) ) |
5 |
|
ineq2 |
|- ( a = A -> ( e i^i a ) = ( e i^i A ) ) |
6 |
5
|
fveq2d |
|- ( a = A -> ( M ` ( e i^i a ) ) = ( M ` ( e i^i A ) ) ) |
7 |
|
difeq2 |
|- ( a = A -> ( e \ a ) = ( e \ A ) ) |
8 |
7
|
fveq2d |
|- ( a = A -> ( M ` ( e \ a ) ) = ( M ` ( e \ A ) ) ) |
9 |
6 8
|
oveq12d |
|- ( a = A -> ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) ) |
10 |
9
|
eqeq1d |
|- ( a = A -> ( ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) |
11 |
10
|
ralbidv |
|- ( a = A -> ( A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) <-> A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) |
12 |
11
|
elrab |
|- ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) |
13 |
|
elex |
|- ( A e. ~P O -> A e. _V ) |
14 |
13
|
a1i |
|- ( ph -> ( A e. ~P O -> A e. _V ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ A C_ O ) -> O e. V ) |
16 |
|
simpr |
|- ( ( ph /\ A C_ O ) -> A C_ O ) |
17 |
15 16
|
ssexd |
|- ( ( ph /\ A C_ O ) -> A e. _V ) |
18 |
17
|
ex |
|- ( ph -> ( A C_ O -> A e. _V ) ) |
19 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P O <-> A C_ O ) ) |
20 |
19
|
a1i |
|- ( ph -> ( A e. _V -> ( A e. ~P O <-> A C_ O ) ) ) |
21 |
14 18 20
|
pm5.21ndd |
|- ( ph -> ( A e. ~P O <-> A C_ O ) ) |
22 |
21
|
anbi1d |
|- ( ph -> ( ( A e. ~P O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) |
23 |
12 22
|
syl5bb |
|- ( ph -> ( A e. { a e. ~P O | A. e e. ~P O ( ( M ` ( e i^i a ) ) +e ( M ` ( e \ a ) ) ) = ( M ` e ) } <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) |
24 |
4 23
|
bitrd |
|- ( ph -> ( A e. ( toCaraSiga ` M ) <-> ( A C_ O /\ A. e e. ~P O ( ( M ` ( e i^i A ) ) +e ( M ` ( e \ A ) ) ) = ( M ` e ) ) ) ) |