| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 | 1 2 | carsgval | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  =  { 𝑎  ∈  𝒫  𝑂  ∣  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 ) } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  𝐴  ∈  { 𝑎  ∈  𝒫  𝑂  ∣  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 ) } ) ) | 
						
							| 5 |  | ineq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑒  ∩  𝑎 )  =  ( 𝑒  ∩  𝐴 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  =  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) ) ) | 
						
							| 7 |  | difeq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑒  ∖  𝑎 )  =  ( 𝑒  ∖  𝐴 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑎  =  𝐴  →  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) )  =  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) ) | 
						
							| 9 | 6 8 | oveq12d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 )  ↔  ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 )  ↔  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝐴  ∈  { 𝑎  ∈  𝒫  𝑂  ∣  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 ) }  ↔  ( 𝐴  ∈  𝒫  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 13 |  | elex | ⊢ ( 𝐴  ∈  𝒫  𝑂  →  𝐴  ∈  V ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝑂  →  𝐴  ∈  V ) ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  𝑂 )  →  𝑂  ∈  𝑉 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  𝑂 )  →  𝐴  ⊆  𝑂 ) | 
						
							| 17 | 15 16 | ssexd | ⊢ ( ( 𝜑  ∧  𝐴  ⊆  𝑂 )  →  𝐴  ∈  V ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝜑  →  ( 𝐴  ⊆  𝑂  →  𝐴  ∈  V ) ) | 
						
							| 19 |  | elpwg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  𝑂  ↔  𝐴  ⊆  𝑂 ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( 𝐴  ∈  𝒫  𝑂  ↔  𝐴  ⊆  𝑂 ) ) ) | 
						
							| 21 | 14 18 20 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝒫  𝑂  ↔  𝐴  ⊆  𝑂 ) ) | 
						
							| 22 | 21 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  𝒫  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) )  ↔  ( 𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 23 | 12 22 | bitrid | ⊢ ( 𝜑  →  ( 𝐴  ∈  { 𝑎  ∈  𝒫  𝑂  ∣  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑎 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑎 ) ) )  =  ( 𝑀 ‘ 𝑒 ) }  ↔  ( 𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 24 | 4 23 | bitrd | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( 𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) |