Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
baselcarsg.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
|
ssidd |
⊢ ( 𝜑 → 𝑂 ⊆ 𝑂 ) |
5 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂 ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ⊆ 𝑂 ) |
7 |
|
df-ss |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) = ( 𝑀 ‘ 𝑒 ) ) |
10 |
|
ssdif0 |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∖ 𝑂 ) = ∅ ) |
11 |
6 10
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∖ 𝑂 ) = ∅ ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) = ( 𝑀 ‘ ∅ ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
14 |
12 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) = 0 ) |
15 |
9 14
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) ) |
16 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ∈ 𝒫 𝑂 ) |
19 |
17 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
20 |
16 19
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ) |
21 |
|
xaddid1 |
⊢ ( ( 𝑀 ‘ 𝑒 ) ∈ ℝ* → ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) = ( 𝑀 ‘ 𝑒 ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) = ( 𝑀 ‘ 𝑒 ) ) |
23 |
15 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
25 |
4 24
|
jca |
⊢ ( 𝜑 → ( 𝑂 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
26 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑂 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
27 |
25 26
|
mpbird |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |