| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | baselcarsg.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 |  | ssidd | ⊢ ( 𝜑  →  𝑂  ⊆  𝑂 ) | 
						
							| 5 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  𝑂  →  𝑒  ⊆  𝑂 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑒  ⊆  𝑂 ) | 
						
							| 7 |  | dfss2 | ⊢ ( 𝑒  ⊆  𝑂  ↔  ( 𝑒  ∩  𝑂 )  =  𝑒 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  𝑂 )  =  𝑒 ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 10 |  | ssdif0 | ⊢ ( 𝑒  ⊆  𝑂  ↔  ( 𝑒  ∖  𝑂 )  =  ∅ ) | 
						
							| 11 | 6 10 | sylib | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  𝑂 )  =  ∅ ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) )  =  ( 𝑀 ‘ ∅ ) ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 14 | 12 13 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) )  =  0 ) | 
						
							| 15 | 9 14 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) ) )  =  ( ( 𝑀 ‘ 𝑒 )  +𝑒  0 ) ) | 
						
							| 16 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 17 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑒  ∈  𝒫  𝑂 ) | 
						
							| 19 | 17 18 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 20 | 16 19 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ 𝑒 )  ∈  ℝ* ) | 
						
							| 21 |  | xaddrid | ⊢ ( ( 𝑀 ‘ 𝑒 )  ∈  ℝ*  →  ( ( 𝑀 ‘ 𝑒 )  +𝑒  0 )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ 𝑒 )  +𝑒  0 )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 23 | 15 22 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 24 | 23 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 25 | 4 24 | jca | ⊢ ( 𝜑  →  ( 𝑂  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 26 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( 𝑂  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( 𝑂  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝑂 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝑂 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 27 | 25 26 | mpbird | ⊢ ( 𝜑  →  𝑂  ∈  ( toCaraSiga ‘ 𝑀 ) ) |