| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
baselcarsg.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 4 |
|
ssidd |
⊢ ( 𝜑 → 𝑂 ⊆ 𝑂 ) |
| 5 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ⊆ 𝑂 ) |
| 7 |
|
dfss2 |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
| 9 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) = ( 𝑀 ‘ 𝑒 ) ) |
| 10 |
|
ssdif0 |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∖ 𝑂 ) = ∅ ) |
| 11 |
6 10
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∖ 𝑂 ) = ∅ ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) = ( 𝑀 ‘ ∅ ) ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 14 |
12 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) = 0 ) |
| 15 |
9 14
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) ) |
| 16 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ∈ 𝒫 𝑂 ) |
| 19 |
17 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ( 0 [,] +∞ ) ) |
| 20 |
16 19
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ 𝑒 ) ∈ ℝ* ) |
| 21 |
|
xaddrid |
⊢ ( ( 𝑀 ‘ 𝑒 ) ∈ ℝ* → ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) = ( 𝑀 ‘ 𝑒 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ 𝑒 ) +𝑒 0 ) = ( 𝑀 ‘ 𝑒 ) ) |
| 23 |
15 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
| 25 |
4 24
|
jca |
⊢ ( 𝜑 → ( 𝑂 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
| 26 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝑂 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝑂 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝑂 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
| 27 |
25 26
|
mpbird |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |