Metamath Proof Explorer


Theorem baselcarsg

Description: The universe set, O , is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
baselcarsg.1 φ M = 0
Assertion baselcarsg φ O toCaraSiga M

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 baselcarsg.1 φ M = 0
4 ssidd φ O O
5 elpwi e 𝒫 O e O
6 5 adantl φ e 𝒫 O e O
7 df-ss e O e O = e
8 6 7 sylib φ e 𝒫 O e O = e
9 8 fveq2d φ e 𝒫 O M e O = M e
10 ssdif0 e O e O =
11 6 10 sylib φ e 𝒫 O e O =
12 11 fveq2d φ e 𝒫 O M e O = M
13 3 adantr φ e 𝒫 O M = 0
14 12 13 eqtrd φ e 𝒫 O M e O = 0
15 9 14 oveq12d φ e 𝒫 O M e O + 𝑒 M e O = M e + 𝑒 0
16 iccssxr 0 +∞ *
17 2 adantr φ e 𝒫 O M : 𝒫 O 0 +∞
18 simpr φ e 𝒫 O e 𝒫 O
19 17 18 ffvelrnd φ e 𝒫 O M e 0 +∞
20 16 19 sselid φ e 𝒫 O M e *
21 xaddid1 M e * M e + 𝑒 0 = M e
22 20 21 syl φ e 𝒫 O M e + 𝑒 0 = M e
23 15 22 eqtrd φ e 𝒫 O M e O + 𝑒 M e O = M e
24 23 ralrimiva φ e 𝒫 O M e O + 𝑒 M e O = M e
25 4 24 jca φ O O e 𝒫 O M e O + 𝑒 M e O = M e
26 1 2 elcarsg φ O toCaraSiga M O O e 𝒫 O M e O + 𝑒 M e O = M e
27 25 26 mpbird φ O toCaraSiga M