Metamath Proof Explorer


Theorem 0elcarsg

Description: The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020)

Ref Expression
Hypotheses carsgval.1 φ O V
carsgval.2 φ M : 𝒫 O 0 +∞
baselcarsg.1 φ M = 0
Assertion 0elcarsg φ toCaraSiga M

Proof

Step Hyp Ref Expression
1 carsgval.1 φ O V
2 carsgval.2 φ M : 𝒫 O 0 +∞
3 baselcarsg.1 φ M = 0
4 0ss O
5 4 a1i φ O
6 in0 e =
7 6 fveq2i M e = M
8 7 3 syl5eq φ M e = 0
9 dif0 e = e
10 9 fveq2i M e = M e
11 10 a1i φ M e = M e
12 8 11 oveq12d φ M e + 𝑒 M e = 0 + 𝑒 M e
13 12 adantr φ e 𝒫 O M e + 𝑒 M e = 0 + 𝑒 M e
14 iccssxr 0 +∞ *
15 2 ffvelrnda φ e 𝒫 O M e 0 +∞
16 14 15 sselid φ e 𝒫 O M e *
17 xaddid2 M e * 0 + 𝑒 M e = M e
18 16 17 syl φ e 𝒫 O 0 + 𝑒 M e = M e
19 13 18 eqtrd φ e 𝒫 O M e + 𝑒 M e = M e
20 19 ralrimiva φ e 𝒫 O M e + 𝑒 M e = M e
21 1 2 elcarsg φ toCaraSiga M O e 𝒫 O M e + 𝑒 M e = M e
22 5 20 21 mpbir2and φ toCaraSiga M