| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
| 2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
| 3 |
|
baselcarsg.1 |
|- ( ph -> ( M ` (/) ) = 0 ) |
| 4 |
|
0ss |
|- (/) C_ O |
| 5 |
4
|
a1i |
|- ( ph -> (/) C_ O ) |
| 6 |
|
in0 |
|- ( e i^i (/) ) = (/) |
| 7 |
6
|
fveq2i |
|- ( M ` ( e i^i (/) ) ) = ( M ` (/) ) |
| 8 |
7 3
|
eqtrid |
|- ( ph -> ( M ` ( e i^i (/) ) ) = 0 ) |
| 9 |
|
dif0 |
|- ( e \ (/) ) = e |
| 10 |
9
|
fveq2i |
|- ( M ` ( e \ (/) ) ) = ( M ` e ) |
| 11 |
10
|
a1i |
|- ( ph -> ( M ` ( e \ (/) ) ) = ( M ` e ) ) |
| 12 |
8 11
|
oveq12d |
|- ( ph -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( 0 +e ( M ` e ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( 0 +e ( M ` e ) ) ) |
| 14 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 15 |
2
|
ffvelcdmda |
|- ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. ( 0 [,] +oo ) ) |
| 16 |
14 15
|
sselid |
|- ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. RR* ) |
| 17 |
|
xaddlid |
|- ( ( M ` e ) e. RR* -> ( 0 +e ( M ` e ) ) = ( M ` e ) ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ e e. ~P O ) -> ( 0 +e ( M ` e ) ) = ( M ` e ) ) |
| 19 |
13 18
|
eqtrd |
|- ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) |
| 20 |
19
|
ralrimiva |
|- ( ph -> A. e e. ~P O ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) |
| 21 |
1 2
|
elcarsg |
|- ( ph -> ( (/) e. ( toCaraSiga ` M ) <-> ( (/) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) ) ) |
| 22 |
5 20 21
|
mpbir2and |
|- ( ph -> (/) e. ( toCaraSiga ` M ) ) |