| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | baselcarsg.1 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 4 |  | 0ss |  |-  (/) C_ O | 
						
							| 5 | 4 | a1i |  |-  ( ph -> (/) C_ O ) | 
						
							| 6 |  | in0 |  |-  ( e i^i (/) ) = (/) | 
						
							| 7 | 6 | fveq2i |  |-  ( M ` ( e i^i (/) ) ) = ( M ` (/) ) | 
						
							| 8 | 7 3 | eqtrid |  |-  ( ph -> ( M ` ( e i^i (/) ) ) = 0 ) | 
						
							| 9 |  | dif0 |  |-  ( e \ (/) ) = e | 
						
							| 10 | 9 | fveq2i |  |-  ( M ` ( e \ (/) ) ) = ( M ` e ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( M ` ( e \ (/) ) ) = ( M ` e ) ) | 
						
							| 12 | 8 11 | oveq12d |  |-  ( ph -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( 0 +e ( M ` e ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( 0 +e ( M ` e ) ) ) | 
						
							| 14 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 15 | 2 | ffvelcdmda |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. ( 0 [,] +oo ) ) | 
						
							| 16 | 14 15 | sselid |  |-  ( ( ph /\ e e. ~P O ) -> ( M ` e ) e. RR* ) | 
						
							| 17 |  | xaddlid |  |-  ( ( M ` e ) e. RR* -> ( 0 +e ( M ` e ) ) = ( M ` e ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ph /\ e e. ~P O ) -> ( 0 +e ( M ` e ) ) = ( M ` e ) ) | 
						
							| 19 | 13 18 | eqtrd |  |-  ( ( ph /\ e e. ~P O ) -> ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ph -> A. e e. ~P O ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) | 
						
							| 21 | 1 2 | elcarsg |  |-  ( ph -> ( (/) e. ( toCaraSiga ` M ) <-> ( (/) C_ O /\ A. e e. ~P O ( ( M ` ( e i^i (/) ) ) +e ( M ` ( e \ (/) ) ) ) = ( M ` e ) ) ) ) | 
						
							| 22 | 5 20 21 | mpbir2and |  |-  ( ph -> (/) e. ( toCaraSiga ` M ) ) |