Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
|- ( ph -> O e. V ) |
2 |
|
carsgval.2 |
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) ) |
3 |
|
baselcarsg.1 |
|- ( ph -> ( M ` (/) ) = 0 ) |
4 |
1 2
|
carsgcl |
|- ( ph -> ( toCaraSiga ` M ) C_ ~P O ) |
5 |
4
|
sselda |
|- ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a e. ~P O ) |
6 |
5
|
elpwid |
|- ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a C_ O ) |
7 |
6
|
ralrimiva |
|- ( ph -> A. a e. ( toCaraSiga ` M ) a C_ O ) |
8 |
|
unissb |
|- ( U. ( toCaraSiga ` M ) C_ O <-> A. a e. ( toCaraSiga ` M ) a C_ O ) |
9 |
7 8
|
sylibr |
|- ( ph -> U. ( toCaraSiga ` M ) C_ O ) |
10 |
1 2 3
|
baselcarsg |
|- ( ph -> O e. ( toCaraSiga ` M ) ) |
11 |
|
unissel |
|- ( ( U. ( toCaraSiga ` M ) C_ O /\ O e. ( toCaraSiga ` M ) ) -> U. ( toCaraSiga ` M ) = O ) |
12 |
9 10 11
|
syl2anc |
|- ( ph -> U. ( toCaraSiga ` M ) = O ) |