Metamath Proof Explorer


Theorem carsguni

Description: The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020)

Ref Expression
Hypotheses carsgval.1
|- ( ph -> O e. V )
carsgval.2
|- ( ph -> M : ~P O --> ( 0 [,] +oo ) )
baselcarsg.1
|- ( ph -> ( M ` (/) ) = 0 )
Assertion carsguni
|- ( ph -> U. ( toCaraSiga ` M ) = O )

Proof

Step Hyp Ref Expression
1 carsgval.1
 |-  ( ph -> O e. V )
2 carsgval.2
 |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) )
3 baselcarsg.1
 |-  ( ph -> ( M ` (/) ) = 0 )
4 1 2 carsgcl
 |-  ( ph -> ( toCaraSiga ` M ) C_ ~P O )
5 4 sselda
 |-  ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a e. ~P O )
6 5 elpwid
 |-  ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a C_ O )
7 6 ralrimiva
 |-  ( ph -> A. a e. ( toCaraSiga ` M ) a C_ O )
8 unissb
 |-  ( U. ( toCaraSiga ` M ) C_ O <-> A. a e. ( toCaraSiga ` M ) a C_ O )
9 7 8 sylibr
 |-  ( ph -> U. ( toCaraSiga ` M ) C_ O )
10 1 2 3 baselcarsg
 |-  ( ph -> O e. ( toCaraSiga ` M ) )
11 unissel
 |-  ( ( U. ( toCaraSiga ` M ) C_ O /\ O e. ( toCaraSiga ` M ) ) -> U. ( toCaraSiga ` M ) = O )
12 9 10 11 syl2anc
 |-  ( ph -> U. ( toCaraSiga ` M ) = O )