| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  |-  ( ph -> O e. V ) | 
						
							| 2 |  | carsgval.2 |  |-  ( ph -> M : ~P O --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | baselcarsg.1 |  |-  ( ph -> ( M ` (/) ) = 0 ) | 
						
							| 4 | 1 2 | carsgcl |  |-  ( ph -> ( toCaraSiga ` M ) C_ ~P O ) | 
						
							| 5 | 4 | sselda |  |-  ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a e. ~P O ) | 
						
							| 6 | 5 | elpwid |  |-  ( ( ph /\ a e. ( toCaraSiga ` M ) ) -> a C_ O ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( ph -> A. a e. ( toCaraSiga ` M ) a C_ O ) | 
						
							| 8 |  | unissb |  |-  ( U. ( toCaraSiga ` M ) C_ O <-> A. a e. ( toCaraSiga ` M ) a C_ O ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( ph -> U. ( toCaraSiga ` M ) C_ O ) | 
						
							| 10 | 1 2 3 | baselcarsg |  |-  ( ph -> O e. ( toCaraSiga ` M ) ) | 
						
							| 11 |  | unissel |  |-  ( ( U. ( toCaraSiga ` M ) C_ O /\ O e. ( toCaraSiga ` M ) ) -> U. ( toCaraSiga ` M ) = O ) | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( ph -> U. ( toCaraSiga ` M ) = O ) |