Metamath Proof Explorer


Theorem carsguni

Description: The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
baselcarsg.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
Assertion carsguni ( 𝜑 ( toCaraSiga ‘ 𝑀 ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 baselcarsg.1 ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 )
4 1 2 carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )
5 4 sselda ( ( 𝜑𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎 ∈ 𝒫 𝑂 )
6 5 elpwid ( ( 𝜑𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎𝑂 )
7 6 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎𝑂 )
8 unissb ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ↔ ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎𝑂 )
9 7 8 sylibr ( 𝜑 ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 )
10 1 2 3 baselcarsg ( 𝜑𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) )
11 unissel ( ( ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ( toCaraSiga ‘ 𝑀 ) = 𝑂 )
12 9 10 11 syl2anc ( 𝜑 ( toCaraSiga ‘ 𝑀 ) = 𝑂 )