Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
baselcarsg.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
4 |
1 2
|
carsgcl |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) |
5 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎 ∈ 𝒫 𝑂 ) |
6 |
5
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎 ⊆ 𝑂 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎 ⊆ 𝑂 ) |
8 |
|
unissb |
⊢ ( ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ↔ ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎 ⊆ 𝑂 ) |
9 |
7 8
|
sylibr |
⊢ ( 𝜑 → ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ) |
10 |
1 2 3
|
baselcarsg |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
11 |
|
unissel |
⊢ ( ( ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ∧ 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ∪ ( toCaraSiga ‘ 𝑀 ) = 𝑂 ) |
12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ∪ ( toCaraSiga ‘ 𝑀 ) = 𝑂 ) |