| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | baselcarsg.1 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∅ )  =  0 ) | 
						
							| 4 | 1 2 | carsgcl | ⊢ ( 𝜑  →  ( toCaraSiga ‘ 𝑀 )  ⊆  𝒫  𝑂 ) | 
						
							| 5 | 4 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑎  ∈  𝒫  𝑂 ) | 
						
							| 6 | 5 | elpwid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  𝑎  ⊆  𝑂 ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( toCaraSiga ‘ 𝑀 ) 𝑎  ⊆  𝑂 ) | 
						
							| 8 |  | unissb | ⊢ ( ∪  ( toCaraSiga ‘ 𝑀 )  ⊆  𝑂  ↔  ∀ 𝑎  ∈  ( toCaraSiga ‘ 𝑀 ) 𝑎  ⊆  𝑂 ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝜑  →  ∪  ( toCaraSiga ‘ 𝑀 )  ⊆  𝑂 ) | 
						
							| 10 | 1 2 3 | baselcarsg | ⊢ ( 𝜑  →  𝑂  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 11 |  | unissel | ⊢ ( ( ∪  ( toCaraSiga ‘ 𝑀 )  ⊆  𝑂  ∧  𝑂  ∈  ( toCaraSiga ‘ 𝑀 ) )  →  ∪  ( toCaraSiga ‘ 𝑀 )  =  𝑂 ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( 𝜑  →  ∪  ( toCaraSiga ‘ 𝑀 )  =  𝑂 ) |