| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
baselcarsg.1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
| 4 |
1 2
|
carsgcl |
⊢ ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 ) |
| 5 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎 ∈ 𝒫 𝑂 ) |
| 6 |
5
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) ) → 𝑎 ⊆ 𝑂 ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎 ⊆ 𝑂 ) |
| 8 |
|
unissb |
⊢ ( ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ↔ ∀ 𝑎 ∈ ( toCaraSiga ‘ 𝑀 ) 𝑎 ⊆ 𝑂 ) |
| 9 |
7 8
|
sylibr |
⊢ ( 𝜑 → ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ) |
| 10 |
1 2 3
|
baselcarsg |
⊢ ( 𝜑 → 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
| 11 |
|
unissel |
⊢ ( ( ∪ ( toCaraSiga ‘ 𝑀 ) ⊆ 𝑂 ∧ 𝑂 ∈ ( toCaraSiga ‘ 𝑀 ) ) → ∪ ( toCaraSiga ‘ 𝑀 ) = 𝑂 ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝜑 → ∪ ( toCaraSiga ‘ 𝑀 ) = 𝑂 ) |