Metamath Proof Explorer


Theorem elcarsgss

Description: Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020)

Ref Expression
Hypotheses carsgval.1 ( 𝜑𝑂𝑉 )
carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
difelcarsg.1 ( 𝜑𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
Assertion elcarsgss ( 𝜑𝐴𝑂 )

Proof

Step Hyp Ref Expression
1 carsgval.1 ( 𝜑𝑂𝑉 )
2 carsgval.2 ( 𝜑𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) )
3 difelcarsg.1 ( 𝜑𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) )
4 1 2 carsgcl ( 𝜑 → ( toCaraSiga ‘ 𝑀 ) ⊆ 𝒫 𝑂 )
5 4 3 sseldd ( 𝜑𝐴 ∈ 𝒫 𝑂 )
6 5 elpwid ( 𝜑𝐴𝑂 )