Step |
Hyp |
Ref |
Expression |
1 |
|
carsgval.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
carsgval.2 |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
difelcarsg.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ) |
4 |
|
difssd |
⊢ ( 𝜑 → ( 𝑂 ∖ 𝐴 ) ⊆ 𝑂 ) |
5 |
|
indif2 |
⊢ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) = ( ( 𝑒 ∩ 𝑂 ) ∖ 𝐴 ) |
6 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 𝑂 → 𝑒 ⊆ 𝑂 ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ⊆ 𝑂 ) |
8 |
|
df-ss |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∩ 𝑂 ) = 𝑒 ) |
10 |
9
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑒 ∩ 𝑂 ) ∖ 𝐴 ) = ( 𝑒 ∖ 𝐴 ) ) |
11 |
5 10
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) = ( 𝑒 ∖ 𝐴 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) |
13 |
|
difdif2 |
⊢ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) = ( ( 𝑒 ∖ 𝑂 ) ∪ ( 𝑒 ∩ 𝐴 ) ) |
14 |
|
ssdif0 |
⊢ ( 𝑒 ⊆ 𝑂 ↔ ( 𝑒 ∖ 𝑂 ) = ∅ ) |
15 |
7 14
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∖ 𝑂 ) = ∅ ) |
16 |
15
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑒 ∖ 𝑂 ) ∪ ( 𝑒 ∩ 𝐴 ) ) = ( ∅ ∪ ( 𝑒 ∩ 𝐴 ) ) ) |
17 |
|
uncom |
⊢ ( ( 𝑒 ∩ 𝐴 ) ∪ ∅ ) = ( ∅ ∪ ( 𝑒 ∩ 𝐴 ) ) |
18 |
|
un0 |
⊢ ( ( 𝑒 ∩ 𝐴 ) ∪ ∅ ) = ( 𝑒 ∩ 𝐴 ) |
19 |
17 18
|
eqtr3i |
⊢ ( ∅ ∪ ( 𝑒 ∩ 𝐴 ) ) = ( 𝑒 ∩ 𝐴 ) |
20 |
16 19
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑒 ∖ 𝑂 ) ∪ ( 𝑒 ∩ 𝐴 ) ) = ( 𝑒 ∩ 𝐴 ) ) |
21 |
13 20
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) = ( 𝑒 ∩ 𝐴 ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ) |
23 |
12 22
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) ) = ( ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ) ) |
24 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
25 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑀 : 𝒫 𝑂 ⟶ ( 0 [,] +∞ ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → 𝑒 ∈ 𝒫 𝑂 ) |
27 |
26
|
elpwdifcl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∖ 𝐴 ) ∈ 𝒫 𝑂 ) |
28 |
25 27
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
29 |
24 28
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ∈ ℝ* ) |
30 |
26
|
elpwincl1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑒 ∩ 𝐴 ) ∈ 𝒫 𝑂 ) |
31 |
25 30
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
32 |
24 31
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ∈ ℝ* ) |
33 |
|
xaddcom |
⊢ ( ( ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ∈ ℝ* ∧ ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) ) = ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) ) |
35 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( 𝐴 ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
36 |
3 35
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
37 |
36
|
simprd |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
38 |
37
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ 𝐴 ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ 𝐴 ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
39 |
23 34 38
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ) → ( ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) ) = ( 𝑀 ‘ 𝑒 ) ) |
41 |
4 40
|
jca |
⊢ ( 𝜑 → ( ( 𝑂 ∖ 𝐴 ) ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) |
42 |
1 2
|
elcarsg |
⊢ ( 𝜑 → ( ( 𝑂 ∖ 𝐴 ) ∈ ( toCaraSiga ‘ 𝑀 ) ↔ ( ( 𝑂 ∖ 𝐴 ) ⊆ 𝑂 ∧ ∀ 𝑒 ∈ 𝒫 𝑂 ( ( 𝑀 ‘ ( 𝑒 ∩ ( 𝑂 ∖ 𝐴 ) ) ) +𝑒 ( 𝑀 ‘ ( 𝑒 ∖ ( 𝑂 ∖ 𝐴 ) ) ) ) = ( 𝑀 ‘ 𝑒 ) ) ) ) |
43 |
41 42
|
mpbird |
⊢ ( 𝜑 → ( 𝑂 ∖ 𝐴 ) ∈ ( toCaraSiga ‘ 𝑀 ) ) |