| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | carsgval.2 | ⊢ ( 𝜑  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | difelcarsg.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( toCaraSiga ‘ 𝑀 ) ) | 
						
							| 4 |  | difssd | ⊢ ( 𝜑  →  ( 𝑂  ∖  𝐴 )  ⊆  𝑂 ) | 
						
							| 5 |  | indif2 | ⊢ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) )  =  ( ( 𝑒  ∩  𝑂 )  ∖  𝐴 ) | 
						
							| 6 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  𝑂  →  𝑒  ⊆  𝑂 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑒  ⊆  𝑂 ) | 
						
							| 8 |  | dfss2 | ⊢ ( 𝑒  ⊆  𝑂  ↔  ( 𝑒  ∩  𝑂 )  =  𝑒 ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  𝑂 )  =  𝑒 ) | 
						
							| 10 | 9 | difeq1d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑒  ∩  𝑂 )  ∖  𝐴 )  =  ( 𝑒  ∖  𝐴 ) ) | 
						
							| 11 | 5 10 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) )  =  ( 𝑒  ∖  𝐴 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) ) | 
						
							| 13 |  | difdif2 | ⊢ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) )  =  ( ( 𝑒  ∖  𝑂 )  ∪  ( 𝑒  ∩  𝐴 ) ) | 
						
							| 14 |  | ssdif0 | ⊢ ( 𝑒  ⊆  𝑂  ↔  ( 𝑒  ∖  𝑂 )  =  ∅ ) | 
						
							| 15 | 7 14 | sylib | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  𝑂 )  =  ∅ ) | 
						
							| 16 | 15 | uneq1d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑒  ∖  𝑂 )  ∪  ( 𝑒  ∩  𝐴 ) )  =  ( ∅  ∪  ( 𝑒  ∩  𝐴 ) ) ) | 
						
							| 17 |  | uncom | ⊢ ( ( 𝑒  ∩  𝐴 )  ∪  ∅ )  =  ( ∅  ∪  ( 𝑒  ∩  𝐴 ) ) | 
						
							| 18 |  | un0 | ⊢ ( ( 𝑒  ∩  𝐴 )  ∪  ∅ )  =  ( 𝑒  ∩  𝐴 ) | 
						
							| 19 | 17 18 | eqtr3i | ⊢ ( ∅  ∪  ( 𝑒  ∩  𝐴 ) )  =  ( 𝑒  ∩  𝐴 ) | 
						
							| 20 | 16 19 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑒  ∖  𝑂 )  ∪  ( 𝑒  ∩  𝐴 ) )  =  ( 𝑒  ∩  𝐴 ) ) | 
						
							| 21 | 13 20 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) )  =  ( 𝑒  ∩  𝐴 ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) ) ) | 
						
							| 23 | 12 22 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) ) )  =  ( ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) ) ) ) | 
						
							| 24 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 25 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑀 : 𝒫  𝑂 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  𝑒  ∈  𝒫  𝑂 ) | 
						
							| 27 | 26 | elpwdifcl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∖  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 28 | 25 27 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 24 28 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  ∈  ℝ* ) | 
						
							| 30 | 26 | elpwincl1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑒  ∩  𝐴 )  ∈  𝒫  𝑂 ) | 
						
							| 31 | 25 30 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 32 | 24 31 | sselid | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  ∈  ℝ* ) | 
						
							| 33 |  | xaddcom | ⊢ ( ( ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  ∈  ℝ*  ∧  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  ∈  ℝ* )  →  ( ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) ) )  =  ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) ) )  =  ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) ) ) | 
						
							| 35 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( 𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 36 | 3 35 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 37 | 36 | simprd | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 38 | 37 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  𝐴 ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  𝐴 ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 39 | 23 34 38 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  𝒫  𝑂 )  →  ( ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) | 
						
							| 41 | 4 40 | jca | ⊢ ( 𝜑  →  ( ( 𝑂  ∖  𝐴 )  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) | 
						
							| 42 | 1 2 | elcarsg | ⊢ ( 𝜑  →  ( ( 𝑂  ∖  𝐴 )  ∈  ( toCaraSiga ‘ 𝑀 )  ↔  ( ( 𝑂  ∖  𝐴 )  ⊆  𝑂  ∧  ∀ 𝑒  ∈  𝒫  𝑂 ( ( 𝑀 ‘ ( 𝑒  ∩  ( 𝑂  ∖  𝐴 ) ) )  +𝑒  ( 𝑀 ‘ ( 𝑒  ∖  ( 𝑂  ∖  𝐴 ) ) ) )  =  ( 𝑀 ‘ 𝑒 ) ) ) ) | 
						
							| 43 | 41 42 | mpbird | ⊢ ( 𝜑  →  ( 𝑂  ∖  𝐴 )  ∈  ( toCaraSiga ‘ 𝑀 ) ) |