Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
| Assertion | elpwdifcl | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwincl.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐶 ) | |
| 2 | 1 | elpwid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | 
| 3 | 2 | ssdifssd | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) | 
| 4 | difexg | ⊢ ( 𝐴 ∈ 𝒫 𝐶 → ( 𝐴 ∖ 𝐵 ) ∈ V ) | |
| 5 | elpwg | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ V → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) ) | |
| 6 | 1 4 5 | 3syl | ⊢ ( 𝜑 → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) ) | 
| 7 | 3 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐶 ) |