| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpwiuncl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
elpwiuncl.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝒫 𝐶 ) |
| 3 |
2
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
| 4 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 5 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 6 |
4 5
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 7 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ) |
| 8 |
1 7
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ) ) |
| 9 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ V ) |
| 10 |
|
elpwg |
⊢ ( ∪ 𝑘 ∈ 𝐴 𝐵 ∈ V → ( ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ) ) |
| 11 |
8 9 10
|
3syl |
⊢ ( 𝜑 → ( ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ) ) |
| 12 |
6 11
|
mpbird |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ) |