Metamath Proof Explorer


Theorem elpwiuncl

Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses elpwiuncl.1 φAV
elpwiuncl.2 φkAB𝒫C
Assertion elpwiuncl φkAB𝒫C

Proof

Step Hyp Ref Expression
1 elpwiuncl.1 φAV
2 elpwiuncl.2 φkAB𝒫C
3 2 elpwid φkABC
4 3 ralrimiva φkABC
5 iunss kABCkABC
6 4 5 sylibr φkABC
7 2 ralrimiva φkAB𝒫C
8 1 7 jca φAVkAB𝒫C
9 iunexg AVkAB𝒫CkABV
10 elpwg kABVkAB𝒫CkABC
11 8 9 10 3syl φkAB𝒫CkABC
12 6 11 mpbird φkAB𝒫C