Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
| Assertion | elpwdifcl | |- ( ph -> ( A \ B ) e. ~P C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
| 2 | 1 | elpwid | |- ( ph -> A C_ C ) |
| 3 | 2 | ssdifssd | |- ( ph -> ( A \ B ) C_ C ) |
| 4 | difexg | |- ( A e. ~P C -> ( A \ B ) e. _V ) |
|
| 5 | elpwg | |- ( ( A \ B ) e. _V -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) ) |
|
| 6 | 1 4 5 | 3syl | |- ( ph -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) ) |
| 7 | 3 6 | mpbird | |- ( ph -> ( A \ B ) e. ~P C ) |